Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Nitrogen removal from landfill leachate using a compact constructed wetland and the effect of chemical pretreatment
KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
2005 (English)In: Journal of Environmental Science and Health. Part A: Toxic/Hazardous Substances and Environmental Engineering, ISSN 1093-4529, E-ISSN 1532-4117, Vol. 40, no 07-jun, 1493-1506 p.Article in journal (Refereed) Published
Abstract [en]

Onsite treatment of leachate was implemented at the Tveta Landfill, adjacent to the city of Sodertalje, Sweden. The system consists of leachate collection in a pond, precipitation of metals with chemicals, a constructed wetland, and forest irrigation. This article describes the constructed wetland and its effectiveness at removing ammonia in the system. Pulsed-discharge hydrology and wetland ecology formed the basis for the development of a compact constructed wetland (CCW). The system presented here has most design similarities with vertical sub-surface flow wetlands, though this system is run in batch mode. Chemically purified leachate and untreated leachate were applied to separate sections of the CCW using a filling and emptying schedule. A leachate treatment cycle of about 14 days duration was used, involving a 7 day submerged phase followed by a 7 day drained period. The removal efficiency varied between 40 and 75% on a mass basis. A maximum mass removal rate of up to 5.1 g m(-1) d(-1) was achieved in wetlands receiving leachate after chemical pretreatment. In wetlands receiving non-treated leachate a net release of up to 18 g m(-2) N occurred in the form of nitrate. This indicated a considerable nitrification but limited denitrification in those systems. It was unclear whether the chemical treatment enhanced the nitrogen removal efficiency because of lower toxicity and/or content of fewer competing cations, or other mechanisms. Mechanisms responsible for the NH4-N removal in the CCW system have to be further investigated.

Place, publisher, year, edition, pages
2005. Vol. 40, no 07-jun, 1493-1506 p.
Keyword [en]
chemically treated leachate, constructed wetlands, hydroperiod, inorganic nitrogen, onsite treatment, removal rates, waste-water, soil
Identifiers
URN: urn:nbn:se:kth:diva-14767DOI: 10.1081/ESE-200055899ISI: 000229287500030Scopus ID: 2-s2.0-18744373872OAI: oai:DiVA.org:kth-14767DiVA: diva2:332808
Note
QC 20100525 QC 20111011Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Kietlinska, AgnieszkaRenman, Gunno
By organisation
Land and Water Resources Engineering
In the same journal
Journal of Environmental Science and Health. Part A: Toxic/Hazardous Substances and Environmental Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 41 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf