Change search
ReferencesLink to record
Permanent link

Direct link
Using mechanistic and computational studies to explain ligand effects in the palladium-catalyzed aerobic oxidation of alcohols
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
Show others and affiliations
2005 (English)In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 127, no 23, 8499-8507 p.Article in journal (Refereed) Published
Abstract [en]

The experimental and computational mechanistic details of the Pd(OAc)(2)/TEA-catalyzed aerobic alcohol oxidation system are disclosed. Measurement of various kinetic isotope effects and the activation parameters as well as rate law derivation support rate-limiting deprotonation of the palladium-coordinated alcohol. Rate-limiting deprotonation of the alcohol is contrary to the majority of related kinetic studies for Pd-catalyzed aerobic oxidation of alcohols, which propose rate-limiting beta-hydride elimination. This difference in the rate-limiting step is supported by the computational model, which predicts the activation energy for deprotonation is 3 kcal/mol higher than the activation energy for beta-hydride elimination. The computational features of the similar Pd(OAc)(2)/pyridine system were also elucidated. Details of the study illustrate that the use of TEA results in an active catalyst that has only one ligand bound to the Pd, resulting in a significant lowering of the activation energy for beta-hydride elimination and, therefore, a catalyst that is active at room temperature.

Place, publisher, year, edition, pages
2005. Vol. 127, no 23, 8499-8507 p.
Keyword [en]
molecular-orbital methods, secondary alcohols, kinetic resolution, palladium(ii)-catalyzed oxidation, selective oxidation, substrate scope, oxygen, ketones, water, air
URN: urn:nbn:se:kth:diva-14831DOI: 10.1021/ja050949rISI: 000229751100059ScopusID: 2-s2.0-20444502894OAI: diva2:332872
QC 20100525Available from: 2010-08-05 Created: 2010-08-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Privalov, Timofei
By organisation
Organic Chemistry
In the same journal
Journal of the American Chemical Society

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 14 hits
ReferencesLink to record
Permanent link

Direct link