Change search
ReferencesLink to record
Permanent link

Direct link
Flame entrainments induced by a turbulent reacting jet using high-temperature and oxygen-deficient oxidizers
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.ORCID iD: 0000-0002-1837-5439
2005 (English)In: Energy & Fuels, ISSN 0887-0624, E-ISSN 1520-5029, Vol. 19, no 4, 1473-1483 p.Article in journal (Refereed) Published
Abstract [en]

The entrainments of a turbulent jet in co-flow under high-temperature and oxygen-deficient oxidizers have been numerically and theoretical studied. By describing the chemical flame reaction, the entrainment induced by a turbulent reacting jet flame is calculated along the entire chemical flame length by mean of a flame entrainment ratio. The results in the near field of a reacting jet are verified by comparison with the results of published measurements. The effects of preheat temperature, the oxygen concentration of the oxidizer, the heat release, and buoyancy on the entrainment rate are investigated. The following results were obtained: (1) The uniformity of the heat release in reacting jets has a strong effect on the flame entrainment: the more uniform the heat release, the greater the entrainment. The effect of heat release reduces the entrainment in the near field of the reacting jets with the same factor of the characteristic ratio, which is r = (T-f/T-o)(0.5). (2) The entrainment increases as the oxygen concentration is decreased. Furthermore, the entrainment is independent of the fuel flow rate and the preheat temperature of the oxidizer for the investigated temperature range (1073-1573 K). (3) The effect of the oxygen concentration and preheat temperature of the oxidizer on buoyancy was examined. A correction Richardson coordinate, which includes the effect of the oxygen concentration (stoichiometric ratio), was derived to describe the local influence of buoyancy force along the chemical flame length under the high-temperature and oxygen-deficient oxidizer conditions. It can be concluded that the buoyancy force increases with the reduction of the oxygen concentration in the oxidizer. (4) The global behavior of the entrainment was revealed. The entrainment of jet flames can be identified as two regimes: (i) the near field, where the entrainment coefficient is positive, and (ii) the far field, where the entrainment coefficient is negative. Corrections for the entrainment rates were derived in terms of a Froude number (Fr) for the momentum-buoyancy transition jet flame under the high-temperature and low-oxygen-concentration oxidizer conditions. Furthermore, the maximum entrainments along the flame length are estimated.

Place, publisher, year, edition, pages
2005. Vol. 19, no 4, 1473-1483 p.
Keyword [en]
diffusion flames, regenerative burner, flow structure, momentum flux, heat release, lpg flame, air, combustion, oxidation, furnace
URN: urn:nbn:se:kth:diva-14932DOI: 10.1021/ef049763oISI: 000230706200037ScopusID: 2-s2.0-23344454405OAI: diva2:332973
QC 20100525Available from: 2010-08-05 Created: 2010-08-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Yang, Weihong
By organisation
Energy and Furnace Technology
In the same journal
Energy & Fuels

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 25 hits
ReferencesLink to record
Permanent link

Direct link