Change search
ReferencesLink to record
Permanent link

Direct link
Global picture of self-similar and non-self-similar decay in Burgers turbulence
KTH, School of Computer Science and Communication (CSC), Computational Biology, CB.
2005 (English)In: Physical Review E, ISSN 1539-3755, Vol. 71, no 5Article in journal (Refereed) Published
Abstract [en]

This paper continues earlier investigations of the decay of Burgers turbulence in one dimension from Gaussian random initial conditions of the power-law spectral type E-0(k)similar to vertical bar k vertical bar(n). Depending on the power n, different characteristic regions are distinguished. The main focus of this paper is to delineate the regions in wave number k and time t in which self-similarity can (and cannot) be observed, taking into account small-k and large-k cutoffs. The evolution of the spectrum can be inferred using physical arguments describing the competition between the initial spectrum and the new frequencies generated by the dynamics. For large wave numbers, we always have a k(-2) region, associated with the shocks. When n is less than 1, the large-scale part of the spectrum is preserved in time and the global evolution is self-similar, so that scaling arguments perfectly predict the behavior in time of the energy and integral scale. If n is larger than 2, the spectrum tends for long times to a universal scaling form independent of the initial conditions, with universal behavior k(2) at small wave numbers. In the interval 2 < n the leading behavior is self-similar, independent of n and with universal behavior k(2) at small wave number. When 1 < n < 2, the spectrum has three scaling regions: first, a vertical bar k vertical bar(n) region at very small k's with a time-independent constant; second, a k(2) region at intermediate wave numbers; finally, the usual k(-2) region. In the remaining interval n <-3 the small-k cutoff dominates and n also plays no role. We find also (numerically) the subleading term similar to k(2) in the evolution of the spectrum in the interval -3 < n < 1. High-resolution numerical simulations have been performed confirming both scaling predictions and analytical asymptotic theory.

Place, publisher, year, edition, pages
2005. Vol. 71, no 5
Keyword [en]
large-scale structures, statistical properties, initial data, equation, universe, shocks
URN: urn:nbn:se:kth:diva-15021DOI: 10.1103/PhysRevE.71.056305ISI: 000231688300064ScopusID: 2-s2.0-27144527957OAI: diva2:333062
QC 20100525Available from: 2010-08-05 Created: 2010-08-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Aurell, Erik
By organisation
Computational Biology, CB

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 13 hits
ReferencesLink to record
Permanent link

Direct link