Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Well-posed boundary conditions for the Navier-Stokes equations
2005 (English)In: SIAM Journal on Numerical Analysis, ISSN 0036-1429, E-ISSN 1095-7170, Vol. 43, no 3, 1231-1255 p.Article in journal (Refereed) Published
Abstract [en]

In this article we propose a general procedure that allows us to determine both the number and type of boundary conditions for time dependent partial differentia equations. With those, well-posedness can be proven for a general initial-boundary value problem. The procedure is exemplifie on the linearized Navier-Stokes equations in two and three space dimensions on a general domain.

Place, publisher, year, edition, pages
2005. Vol. 43, no 3, 1231-1255 p.
Keyword [en]
well-posed problems, boundary conditions, Navier-Stokes equations, energy estimates, initial boundary value problems, stability, stable penalty method, domain decomposition schemes
Identifiers
URN: urn:nbn:se:kth:diva-15174ISI: 000233238800016OAI: oai:DiVA.org:kth-15174DiVA: diva2:333215
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Svärd, Magnus
In the same journal
SIAM Journal on Numerical Analysis

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 23 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf