Change search
ReferencesLink to record
Permanent link

Direct link
Semi-Meissner state and neither type-I nor type-II superconductivity in multicomponent superconductors
2005 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 72, no 18Article in journal (Refereed) Published
Abstract [en]

Traditionally, superconductors are categorized as type I or type II. Type-I superconductors support only Meissner and normal states, while type-II superconductors form magnetic vortices in sufficiently strong applied magnetic fields. Recently there has been much interest in superconducting systems with several species of condensates, in fields ranging from condensed matter to high energy physics. Here we show that the classification into types I and II is insufficient for such multicomponent superconductors. We obtain solutions representing thermodynamically stable vortices with properties falling outside the usual type-I/type-II dichotomy, in that they have the following features: (i) Pippard electrodynamics, (ii) interaction potential with long-range attractive and short-range repulsive parts, (iii) for an n-quantum vortex, a nonmonotonic ratio E(n)/n where E(n) is the energy per unit length, (iv) energetic preference for nonaxisymmetric vortex states, vortex molecules. Consequently, these superconductors exhibit an emerging first order transition into a semi-Meissner state, an inhomogeneous state comprising a mixture of domains of two-component Meissner state and vortex clusters.

Place, publisher, year, edition, pages
2005. Vol. 72, no 18
Keyword [en]
der-waals attraction, vortices, field
URN: urn:nbn:se:kth:diva-15211DOI: 10.1103/PhysRevB.72.180502ISI: 000233603600010OAI: diva2:333252
QC 20100525Available from: 2010-08-05 Created: 2010-08-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Babaev, Egor
In the same journal
Physical Review B. Condensed Matter and Materials Physics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 25 hits
ReferencesLink to record
Permanent link

Direct link