Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the congruence ax plus by 1 modulo xy
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).ORCID iD: 0000-0003-4734-5092
2005 (English)In: Experimental Mathematics, ISSN 1058-6458, E-ISSN 1944-950X, Vol. 14, no 4, 391-401 p.Article in journal (Refereed) Published
Abstract [en]

We give bounds on the number of solutions to the Diophantine equation (X + 1/x)(Y + 1/y) = n as n tends to infinity. These bounds are related to the number of solutions to congruences of the form ax + by equivalent to 1 modulo xy.

Place, publisher, year, edition, pages
2005. Vol. 14, no 4, 391-401 p.
Keyword [en]
Diophantine equation, linear congruence, divisor function
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-15311ISI: 000234638600002Scopus ID: 2-s2.0-32844468212OAI: oai:DiVA.org:kth-15311DiVA: diva2:333352
Note

QC 20141202

Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Scopus

Authority records BETA

Kurlberg, Pär

Search in DiVA

By author/editor
Kurlberg, Pär
By organisation
Mathematics (Div.)
In the same journal
Experimental Mathematics
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 31 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf