Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Heat recovery and floating condensing in supermarkets
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
2006 (English)In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 38, no 2, 73-81 p.Article in journal (Refereed) Published
Abstract [en]

Supermarkets are great energy users in many countries. The potential for increased energy efficiency is large. One option is to utilize heat recovery (or heat reclaim) from condensers to heat the premises. Obviously this option is only interesting in relatively cold areas such as northern Europe, Canada, etc. An alternative to heat recovery is floating condensing pressure, which improves the coefficient of performance and decreases the energy consumption of the refrigeration system at lower outdoor temperature. Both heat recovery and floating condensing pressure can be utilized interchangeably depending on the heat requirements of the premises. A computer model that calculates the energy consumption in a supermarket with the possibility to simulate different system solutions for the refrigeration system has been developed at the Royal Institute of Technology, Department of Energy Technology. The software CyberMart is used in the present study to compare the potential of heat recovery and floating condensing in Swedish supermarkets. Measurements of different parameters such as temperatures, relative humidity and compressor power have been carried out in different supermarkets with heat recovery to validate the theoretical calculations. The present study shows that heating requirements can be covered completely by heat reclaim from the condenser. However, practical experiences show that installations are less efficient due to poor system solutions and/or control strategies. According to the results from CyberMart, the highest potential of energy saving is obtained from using a systems solution with both heat recovery and floating condensing.

Place, publisher, year, edition, pages
2006. Vol. 38, no 2, 73-81 p.
Keyword [en]
heat recovery, floating condensing, supermarkets, simulations, field measurements
Identifiers
URN: urn:nbn:se:kth:diva-15347DOI: 10.1016/j.enbuild.2005.05.003ISI: 000233525500001Scopus ID: 2-s2.0-27744603719OAI: oai:DiVA.org:kth-15347DiVA: diva2:333388
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Arias, Jaime M.Lundqvist, Per G.
By organisation
Applied Thermodynamics and Refrigeration
In the same journal
Energy and Buildings

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 471 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf