References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Generic 3-dimensional volume-preserving diffeomorphisms with superexponential growth of number of periodic orbitsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2006 (English)In: Discrete and Continuous Dynamical Systems, ISSN 1078-0947, Vol. 15, no 2, 611-640 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2006. Vol. 15, no 2, 611-640 p.
##### Keyword [en]

orbit growth, periodic points, measure-preserving transformations, homoclinic tangency, homoclinic tangencies, strange attractors, dynamics, points, hyperbolicity, bifurcations, horseshoes, dimension
##### Identifiers

URN: urn:nbn:se:kth:diva-15467ISI: 000235664000013OAI: oai:DiVA.org:kth-15467DiVA: diva2:333508
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
##### Note

QC 20100525Available from: 2010-08-05 Created: 2010-08-05Bibliographically approved

Let M be a compact manifold of dimension three with a nondegenerate volume form Omega and Diff(Omega)(r) (M) be the space of C-r-smooth (Omega-) volume-preserving difffeomorphisms of M with 2 <= r <= infinity. In this paper we prove two results. One of them provides the existence of a Newhouse domain N in Diff(Omega)(r)(M). The proof is based on the theory of normal forms [13], construction of certain renormalization limits, and results from [23, 26, 28, 32]. To formulate the second one, associate to each diffeomorphism a sequence P-n(f) which gives for each n the number of isolated periodic points of f of period n. The main result of this paper states that for a Baire generic diffeomorphism f in N, the number of periodic points P-n(f) grows with n faster than any prescribed sequence of numbers {a(n)} (n is an element of Z+) along a subsequence, i.e., P-ni (f) > ani for some n(i) -> with infinity i -> infinity. The strategy of the proof is similar to the one of the corresponding 2-dimensional non volume-preserving result [16]. The latter one is, in its turn, based on the Gonchenko-Shilnikov-Turaev Theorem [8, 9].

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});