Change search
ReferencesLink to record
Permanent link

Direct link
Low-temperature spin-state transition in LaCoO3 investigated using resonant x-ray absorption at the CoK edge
Show others and affiliations
2006 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 73, no 5Article in journal (Refereed) Published
Abstract [en]

LaCoO3 displays two broad anomalies in the DC magnetic susceptibility chi(DC), occurring, respectively, around 50 K and 500 K. We have investigated the first of them within the 10 K < T < RT temperature range using Co K alpha(1) x-ray absorption spectroscopy (XAS) in the partial fluorescence yield mode. In contrast with previous O K-edge XAS reports, our data show the existence of abrupt changes around 50 K which can be nicely correlated with the anomaly in chi(DC). To our knowledge, this is the first time that a clear, quantitative relationship between the temperature dependence of the magnetic susceptibility and that of the XAS spectra is reported. The intensity changes in the preedge region, which are consistent with a transition from a lower to a higher spin state, have been analyzed using a minimal model including the Co 3d and O 2p hybridization in the initial state. The temperature dependence of the Co magnetic moment obtained from the estimated e(g) and t(2g) occupations could be satisfactorily reproduced. Also, the decrease of the Co 3d and O 2p hybridization by increasing temperature obtained from this simple model compares favorably with the values estimated from thermal evolution of the crystallographic structure.

Place, publisher, year, edition, pages
2006. Vol. 73, no 5
Keyword [en]
electronic-structure, magnetic properties, scattering, perovskite, distortion, lamno3
URN: urn:nbn:se:kth:diva-15471DOI: 10.1103/PhysRevB.73.054424ISI: 000235668300065ScopusID: 2-s2.0-33144475215OAI: diva2:333512
QC 20100525Available from: 2010-08-05 Created: 2010-08-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Tjernberg, Oscar
By organisation
Microelectronics and Information Technology, IMIT
In the same journal
Physical Review B. Condensed Matter and Materials Physics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 23 hits
ReferencesLink to record
Permanent link

Direct link