Change search
ReferencesLink to record
Permanent link

Direct link
Hyperelastic modelling of arterial layers with distributed collagen fibre orientations
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
2006 (English)In: Journal of the Royal Society Interface, ISSN 1742-5662, E-ISSN 1742-5689, Vol. 3, no 6, 15-35 p.Article, review/survey (Refereed) Published
Abstract [en]

Constitutive relations are fundamental to the solution of problems in continuum mechanics, and are required in the study of, for example, mechanically dominated clinical interventions involving soft biological tissues. Structural continuum constitutive models of arterial layers integrate information about the tissue morphology and therefore allow investigation of the interrelation between structure and function in response to mechanical loading. Collagen fibres are key ingredients in the structure of arteries. In the media (the middle layer of the artery wall) they are arranged in two helically distributed families with a small pitch and very little dispersion in their orientation (i.e. they are aligned quite close to the circumferential direction). By contrast, in the adventitial and intimal layers, the orientation of the collagen fibres is dispersed, as shown by polarized light microscopy of stained arterial tissue. As a result, continuum models that do not account for the dispersion are not able to capture accurately the stress-strain response of these layers. The purpose of this paper, therefore, is to develop a structural continuum framework that is able to represent the dispersion of the collagen fibre orientation. This then allows the development of a new hyperelastic free-energy function that is particularly suited for representing the anisotropic elastic properties of adventitial and intimal layers of arterial walls, and is a generalization of the fibre-reinforced structural model introduced by Holzapfel & Gasser (Holzapfel & Gasser 2001 Comput. Meth. Appl. Mech. Eng. 190, 4379-4403) and Holzapfel et al. (Holzapfel et al. 2000 J. Elast. 61, 1-48). The model incorporates an additional scalar structure parameter that characterizes the dispersed collagen orientation. An efficient finite element implementation of the model is then presented and numerical examples show that the dispersion of the orientation of collagen fibres in the adventitia of human iliac arteries has a significant effect on their mechanical response.

Place, publisher, year, edition, pages
2006. Vol. 3, no 6, 15-35 p.
Keyword [en]
anisotropy, constitutive modelling, arterial layers, arterial wall mechanics, fibre distribution, collagen fibres, finite-element implementation, structural constitutive model, soft biological tissues, strain-energy density, human brain arteries, mechanical-properties, continuum basis, reinforced composites, elastic properties, carotid arteries
URN: urn:nbn:se:kth:diva-15482DOI: 10.1098/rsif.2005.0073ISI: 000235712600002ScopusID: 2-s2.0-33745171176OAI: diva2:333523
QC 20100525Available from: 2010-08-05 Created: 2010-08-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Gasser, T. Christian
By organisation
Solid Mechanics (Dept.)
In the same journal
Journal of the Royal Society Interface

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 57 hits
ReferencesLink to record
Permanent link

Direct link