Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bending elasticity of charged surfactant layers: The effect of layer thickness
2006 (English)In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 22, no 8, 3678-3691 p.Article in journal (Refereed) Published
Abstract [en]

The bending properties of charged one-component surfactant films of finite thickness have been theoretically investigated. It is demonstrated that finite thickness effects are of crucial importance for layers formed by an ionic surfactant with a flexible hydrophobic tail, whereas the influence on layers formed by a surfactant with a rigid tail is less pronounced. As a matter of fact, in the former case, the spontaneous curvature and mean and Gaussian bending constants all become significantly modified as compared to an infinitely thin surface and assume identical values as if the surfactant layer were bent at constant layer thickness. As a result, the spontaneous curvature is found to decrease, whereas the magnitudes of the mean and Gaussian bending constants both increase with increasing layer thickness as well as with increasing hydrophobic-hydrophilic interfacial tension. All of these trends are consistent with experimental observations. In addition, it is demonstrated that separating the hydrophilic-hydrophobic interface and the surface of charge a certain distance from each other tends to increase the spontaneous curvature and the mean bending constant, whereas the Gaussian bending constant becomes increasingly negative. It is also found that the work of bending a bilayer into a geometrically closed vesicle is substantially raised to large positive values for surfactants with flexible aliphatic chains, whereas the corresponding quantity is negative for surfactants with rigid tails, indicating that stable bilayer structures may only be formed by the former surfactant. Furthermore, each of the bending elasticity constants for monolayers formed by a double-chain ionic surfactant are found to assume lower values as compared with layers formed by the corresponding single-chain surfactant.

Place, publisher, year, edition, pages
2006. Vol. 22, no 8, 3678-3691 p.
Keyword [en]
small-angle neutron, polymer-like micelles, curvature free-energy, ionic surfactants, molecular theory, fluid membranes, lamellar phases, bilayers, monolayers, scattering
Identifiers
URN: urn:nbn:se:kth:diva-15599ISI: 000236745700038OAI: oai:DiVA.org:kth-15599DiVA: diva2:333641
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Bergström, Lars Magnus
In the same journal
Langmuir

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 31 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf