Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On intersection problem for perfect binary codes
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).
2006 (English)In: Designs, Codes and Cryptography, ISSN 0925-1022, E-ISSN 1573-7586, Vol. 39, no 3, 317-322 p.Article in journal (Refereed) Published
Abstract [en]

The main result is that to any even integer q in the interval 0 <= q <= 2(n+1-2) (log(n+1)), there are two perfect codes C-1 and C-2 of length n = 2(m) -1, m >= 4, such that vertical bar C-1 boolean AND C-2 vertical bar = q.

Place, publisher, year, edition, pages
2006. Vol. 39, no 3, 317-322 p.
Keyword [en]
perfect binary codes
Identifiers
URN: urn:nbn:se:kth:diva-15612DOI: 10.1007/s10623-005-4982-8ISI: 000236914700002Scopus ID: 2-s2.0-33645961603OAI: oai:DiVA.org:kth-15612DiVA: diva2:333654
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Heden, Olof
By organisation
Mathematics (Div.)
In the same journal
Designs, Codes and Cryptography

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 29 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf