Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
High-pressure melting of lead
KTH, School of Engineering Sciences (SCI), Theoretical Physics, Condensed Matter Theory.ORCID iD: 0000-0001-7531-3210
Show others and affiliations
2006 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 73, no 14Article in journal (Refereed) Published
Abstract [en]

The melting curve of the hexagonal close-packed (hcp) phase of lead (Pb) has been determined over a wide pressure range using both ab initio molecular dynamics (AIMD) simulations and classical molecular dynamics (CMD) employing an effective pair potential. The AIMD simulations are based on a density functional theory (DFT) in the generalized gradient approximation (GGA). The Pb melting curve, constructed using a well-established theoretical scheme, is in excellent agreement with the AIMD results. Our calculated equation of state (EOS) of hcp Pb is in excellent agreement with experimental data up to 40 GPa. Our melting curve agrees very well with melting temperatures obtained in both shock-wave and diamond-anvil cell (DAC) experiments, but at higher pressures our curve lies between the two data sets.

Place, publisher, year, edition, pages
2006. Vol. 73, no 14
Keyword [en]
ultrahigh-pressure, molecular-dynamics, temperatures, equation, metals, state, core, iron, diffraction, compression
Identifiers
URN: urn:nbn:se:kth:diva-15644DOI: 10.1103/PhysRevB.73.140103ISI: 000237154500003Scopus ID: 2-s2.0-33646229824OAI: oai:DiVA.org:kth-15644DiVA: diva2:333686
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Belonoshko, Anatoly B.

Search in DiVA

By author/editor
Belonoshko, Anatoly B.Ahuja, Rajeev
By organisation
Condensed Matter TheoryMaterials Science and Engineering
In the same journal
Physical Review B. Condensed Matter and Materials Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 38 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf