Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparison and evaluation of two common methods to measure center of mass displacement in three dimensions during gait
KTH, School of Engineering Sciences (SCI), Mechanics.ORCID iD: 0000-0001-5417-5939
2006 (English)In: Human Movement Science, ISSN 0167-9457, E-ISSN 1872-7646, Vol. 25, no 2, 238-256 p.Article in journal (Refereed) Published
Abstract [en]

Center of mass displacement during gait has frequently been used as an indicator of gait efficiency or as a complement to standard gait analysis. With technological advances, measuring the center of mass as the centroid of a multi-segment system is practical and feasible, but must first be compared to the well-established Newtonian computation of double-integrating the ground reaction force. This study aims to verify that the kinematic centroid obtained from a commonly-used model (Vicon Peak (R) Plug-In-Gait) provides at least as reliable measurements of center of mass displacement as those obtained from the ground reaction forces. Gait data was collected for able-bodied children and children with myelomeningocele who use larger lateral center of mass excursions during gait. Reasonable agreement between methods was found in fore-aft and vertical directions, where the methods' excursions differed by an average of less than 10 mm in either direction, and the average RMS differences between methods' computed curves were 6 and 13 mm. Particularly good agreement was observed in the lateral direction, where the calculated excursions differed by an average of less than 2 mm and the RMS difference was 5 mm. Error analyses in computing the center of mass displacement from ground reaction forces were performed. A 5% deviation in mass estimation increased the computed vertical excursion twofold, and a 5% deviation in the integration constant of initial velocity increased the computed fore-aft excursions by 10%. The suitability of calculating center of mass displacement using ground reaction forces in a patient population is questioned. The kinematic centroid is susceptible to errors in segment parameters and marker placement, but results in plausible results that are at least within the range of doubt of the better-established ground reaction force integration, and are more useful when interpreting 3-D gait data.

Place, publisher, year, edition, pages
2006. Vol. 25, no 2, 238-256 p.
Keyword [en]
center of gravity, ground reaction force, excursion, gait analysis, human movement, body center, vertical displacement, level walking, lumbosacral myelomeningocele, pathological gaits, refined view, 3-d motion, gravity, determinants, kinematics
Identifiers
URN: urn:nbn:se:kth:diva-15683DOI: 10.1016/j.humov.2005.11.001ISI: 000237632500007Scopus ID: 2-s2.0-33645942754OAI: oai:DiVA.org:kth-15683DiVA: diva2:333725
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Gutierrez-Farewik, Elena M.

Search in DiVA

By author/editor
Gutierrez-Farewik, Elena M.
By organisation
Mechanics
In the same journal
Human Movement Science

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 41 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf