Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Reduced rank linear regression and weighted low rank approximations
KTH, School of Electrical Engineering (EES), Signal Processing. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
KTH, School of Electrical Engineering (EES), Signal Processing. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.ORCID iD: 0000-0002-6855-5868
2006 (English)In: IEEE Transactions on Signal Processing, ISSN 1053-587X, E-ISSN 1941-0476, Vol. 54, no 6, 2063-2075 p.Article in journal (Refereed) Published
Abstract [en]

This paper addresses parameter estimation in reduced rank linear regressions. This estimation problem has applications in several subject areas including system identification, sensor array processing, econometrics and statistics. A new estimation procedure, based on instrumental variable principles, is derived and analyzed. The proposed method is designed to handle noise that is both spatially and temporally autocorrelated. An asymptotical analysis shows that the proposed method outperforms previous methods when the noise is temporally correlated and that it is asymptotically efficient otherwise. A numerical study indicates that the performance is significantly improved also for finite sample set sizes. In addition, the Cramer-Rao lower bound (CRB) on unbiased estimator covariance for the data model is derived. A statistical test for rank determination is also developed. An important step in the new algorithm is the weighted low rank approximation (WLRA). As the WLRA lacks a closed form solution in its general form, two new, noniterative and approximate solutions are derived, both of them asymptotically optimal when part of the estimation procedure proposed here. These methods are also interesting in their own right since the WLRA has several applications.

Place, publisher, year, edition, pages
IEEE Signal Processing Society, 2006. Vol. 54, no 6, 2063-2075 p.
Keyword [en]
Cramer-Rao lower bound (CRB), factor analysis, parameter estimation, rank detection, reduced rank linear regression, weighted low rank approximation (WLRA), parameter, matrices, signals, space
National Category
Signal Processing
Identifiers
URN: urn:nbn:se:kth:diva-15711DOI: 10.1109/tsp.2006.873502ISI: 000237900000009Scopus ID: 2-s2.0-33744527863OAI: oai:DiVA.org:kth-15711DiVA: diva2:333753
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Jansson, Magnus

Search in DiVA

By author/editor
Werner, KarlJansson, Magnus
By organisation
Signal ProcessingACCESS Linnaeus Centre
In the same journal
IEEE Transactions on Signal Processing
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 80 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf