Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Interpreting dissipated energy from complex modulus data
2006 (English)In: International Journal on Road Materials and Pavement Design, ISSN 1468-0629, E-ISSN 2164-7402, Vol. 7, no 2, 223-245 p.Article in journal (Refereed) Published
Abstract [en]

An asphalt mixture's ability to absorb energy without fracturing is directly related to cracking performance of asphalt pavement. The dissipated energy per load cycle is commonly determined as the area of the hysteresis loop developed during cyclic loading of asphalt mixture. However, it is unclear whether all dissipated energy determined in this manner is irreversible and associated with damage, or whether it is at least partially reversible and not fully associated with damage. Therefore, this study was undertaken to evaluate the nature of the dissipated energy determined from the area of the hysteresis loop developed during cyclic loading of asphalt mixture. Dissipated energies determined experimentally from cyclic load tests were compared to dissipated energies predicted using rheological parameters determined from static creep tests. For a range of asphalt mixtures, the area of the hysteresis loop appeared to be strongly affected by the delayed elastic behavior of the mixture, even when cyclic response had reached steady-state conditions. Therefore, it appears that the area of the hysteresis loop is not fully associated with damage and very probably overestimates the rate of dissipated energy and damage development during cyclic load testing of asphalt mixture. Furthermore, it is generally not possible to reliably separate reversible from irreversible dissipated energy in the hysteresis loop using conventional complex modulus data. Consequently, it is recommended that irreversible dissipated energy be determined using rheological parameters obtained from static creep test data. The key is to have parameters in the rheological model that properly separate the elastic (immediate and delayed) from the viscous response, since only the viscous response is irreversible and contributes to damage.

Place, publisher, year, edition, pages
2006. Vol. 7, no 2, 223-245 p.
Keyword [en]
dissipated energy, fracture mechanics, damage, cracking mixture rheology, cyclic test, static creep test, asphalt, fatigue
Identifiers
URN: urn:nbn:se:kth:diva-15731ISI: 000238056300005OAI: oai:DiVA.org:kth-15731DiVA: diva2:333773
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Birgisson, Björn

Search in DiVA

By author/editor
Birgisson, Björn
In the same journal
International Journal on Road Materials and Pavement Design

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 43 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf