Change search
ReferencesLink to record
Permanent link

Direct link
3D Crack propagation in unreinforced concrete. A two-step algorithm for tracking 3D crack paths
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.), Biomechanics.
2006 (English)In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 195, no 37-40, 5198-5219 p.Article in journal (Refereed) Published
Abstract [en]

Tensile failure of unreinforced concrete involves progressive micro-cracking, and the related strain-softening can coalesce into geometrical discontinuities, which separate the material. Advanced mechanical theories and numerical schemes are required to efficiently and adequately represent crack propagation in 3D. In this paper we use the concept of strong discontinuities to model concrete failure. We introduce a cohesive fracture process zone, which is characterized by a transversely isotropic traction-separation law. We combine the cohesive crack concept with the partition of unity finite element method, where the finite element space is enhanced by the Heaviside function. The concept is implemented for tetrahedral elements and the failure initialization is based on the simple (non-local) Rankine criterion. For each element we assume the embedded discontinuity to be flat in the reference configuration, which leads to a non-smooth crack surfaces approximation in 3D, in general; different concepts for tracking non-planar cracks in 3D are reviewed. In addition, we propose a two-step algorithm for tracking the crack path, where a predictor step defines discontinuities according to the (non-local) failure criterion and a corrector step draws in non-local information of the existing discontinuities in order to predict a 'closed' 3D crack surface; implementation details are provided. The proposed framework is used to analyze the predictability of concrete failure by two benchmark examples, i.e. the Nooru-Moharned test, and the Brokenshire test. We compare our numerical results, which are mesh independent, with experimental data and numerical results adopted from the literature.

Place, publisher, year, edition, pages
2006. Vol. 195, no 37-40, 5198-5219 p.
Keyword [en]
3D crack propagation, unreinforced concrete, tracking algorithms PUFEM, finite-element method, strong discontinuity approach, damage-contact model, numerical-simulation, failure analysis, level sets, localization, fracture, plasticity, solids
URN: urn:nbn:se:kth:diva-15823DOI: 10.1016/j.cma.2005.10.023ISI: 000238792600030ScopusID: 2-s2.0-33745054965OAI: diva2:333865
QC 20100525Available from: 2010-08-05 Created: 2010-08-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Gasser, T. ChristianHolzapfel, Gerhard A.
By organisation
Solid Mechanics (Dept.)Biomechanics
In the same journal
Computer Methods in Applied Mechanics and Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 60 hits
ReferencesLink to record
Permanent link

Direct link