Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Interpretation of apparent activation energies for electron transport in dye-sensitized nanocrystalline solar cells
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry.
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
2006 (English)In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 110, no 28, 13694-13699 p.Article in journal (Refereed) Published
Abstract [en]

Electron transport in dye-sensitized nanocrystalline solar cells appears to be a slow diffusion-controlled process. Values of the apparent electron diffusion coefficient are many orders of magnitude smaller than those reported for bulk anatase. The slow transport of electrons has been attributed to multiple trapping (MT) at energy levels distributed exponentially in the band gap of the nanocrystalline oxide. In the MT model, release of immobile electrons from occupied traps to the conduction band is a thermally activated process, and it might therefore be expected that the apparent electron diffusion coefficient should depend strongly on temperature. In fact, rather small activation energies (0.1-0.25 eV) have been derived from time and frequency resolved measurements of the short circuit photocurrent. It is shown that the MT model can give rise to such anomalously low apparent activation energies as a consequence of the boundary conditions imposed by the short circuit condition and the quasi-static relationship between changes in the densities of free and trapped electrons. This conclusion has been confirmed by exact numerical solutions of the time-dependent generation/collection problem for periodic excitation that provide a good fit to experimental data.

Place, publisher, year, edition, pages
2006. Vol. 110, no 28, 13694-13699 p.
Keyword [en]
back-reaction, semiconductor electrodes, interfacial transfer, photovoltaic cells, tio2, spectroscopy, efficiency, kinetics, density
Identifiers
URN: urn:nbn:se:kth:diva-15844DOI: 10.1021/jp0627776ISI: 000239001700005Scopus ID: 2-s2.0-33746889427OAI: oai:DiVA.org:kth-15844DiVA: diva2:333886
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Boschloo, GerritHagfeldt, Anders
By organisation
Physical ChemistryOrganic Chemistry
In the same journal
Journal of Physical Chemistry B

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 23 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf