Change search
ReferencesLink to record
Permanent link

Direct link
A combined molecular dynamics simulation and quantum chemical study on the mechanism for activation of the OxyR transcription factor by hydrogen peroxide
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry.ORCID iD: 0000-0003-2673-075X
2006 (English)In: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 4, no 18, 3468-3478 p.Article in journal (Refereed) Published
Abstract [en]

Molecular dynamics (MD) simulations have been performed on the regulatory domain of the Escherichia coli OxyR transcription factor for the different chemical states along the mechanistic cycle for its activation by hydrogen peroxide. Conformational analysis indicates that His198 and Arg220 catalytic residues can be involved in the biochemical process of activation of OxyR. On the basis of the simulation data, a detailed mechanism for the oxidation process is suggested in which His198, in the presence of an arginine residue, functions as a unique acid - base catalyst in the successive oxidations of Cys199 and Cys208 by hydrogen peroxide. This mechanistic proposal has been tested by density functional theory (DFT-B3LYP) and ab initio (MP2) calculations on model systems. The two oxidations are both identified as nucleophilic substitution reactions of S(N)2 type with deprotonated cysteines functioning as nucleophiles. Both reactions have a calculated free energy of activation close to 15 kcal mol(-1), which is consistent with the available experimental data on the kinetics of the activation process.

Place, publisher, year, edition, pages
2006. Vol. 4, no 18, 3468-3478 p.
Keyword [en]
disulfide interchange reactions, polarizable continuum model, nucleophilic-substitution, redox regulation, bond formation, rate constants, mp2 energy, ab-initio, density, thiolate
URN: urn:nbn:se:kth:diva-15953DOI: 10.1039/b604602aISI: 000240166800016ScopusID: 2-s2.0-84961985014OAI: diva2:333995
QC 20100525Available from: 2010-08-05 Created: 2010-08-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Brinck, Tore
By organisation
Physical Chemistry
In the same journal
Organic and biomolecular chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 17 hits
ReferencesLink to record
Permanent link

Direct link