Change search
ReferencesLink to record
Permanent link

Direct link
Theoretical study of phosphorescence in dye doped light emitting diodes
KTH, School of Biotechnology (BIO), Theoretical Chemistry.ORCID iD: 0000-0002-1763-9383
2006 (English)In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 125, no 23Article in journal (Refereed) Published
Abstract [en]

Phosphorescence of platinum(II) octaethyl porphyrin (PtOEP), which has been used in organic light emitting diodes to overcome the efficiency limit imposed by the formation of triplet excitons, is studied by time-dependent (TD) density functional theory (DFT). The spin-orbit coupling (SOC) effects and the phosphorescence radiative lifetime (tau(r)(p)), calculated by the TD DFT method with the quadratic response technique, are analyzed for a series of porphyrins in order to elucidate the internal heavy atom effect on tau(r)(p). While the significance of the d(pi) orbital admixture into the lowest unoccupied molecular orbital e(g)(pi(*)), proposed by Gouterman [J. Chem. Phys. 56, 4073 (1972)], is supported by our SOC calculations, we find that the charge-transfer (CT) mechanism is more important; the CT state of the (3)A(2g) symmetry provides effective SOC mixing with the ground state, and a large (3)A(2g)-E-3(u) transition dipole moment gives the main contribution to the radiative phosphorescence rate constant. The IR and Raman spectra in the ground state and first excited triplet state (T-1) are studied for proper assignment of vibronic patterns. An orbital angular momentum of the T-1 state is not quenched completely by the Jahn-Teller effect. A large zero-field splitting is predicted for PtP and PtOEP which results from a competition between the SOC and Jahn-Teller effects. A strong vibronic activity is found for the e(g) mode at 230 cm(-1) in PtP phosphorescence which is shifted to 260 cm(-1) in PtOEP. This out-of-plane vibration of the Pt atom produces considerable change of the SOC mixing. The role of charge-transfer state of d(pi)pi(*) type is stressed for the explanation of the electroluminescent properties of the dye doped light emitting diode.

Place, publisher, year, edition, pages
2006. Vol. 125, no 23
Keyword [en]
free-base porphin, density-functional theory, lowest triplet-state, normal coordinate analysis, inverse spectral problem, harmonic force-field, excited-states, organic electrophosphorescence, vibrational assignment, conjugated polymers
URN: urn:nbn:se:kth:diva-16254DOI: 10.1063/1.2388263ISI: 000243415300030ScopusID: 2-s2.0-33845766066OAI: diva2:334296
QC 20100525Available from: 2010-08-05 Created: 2010-08-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Ågren, Hans
By organisation
Theoretical Chemistry
In the same journal
Journal of Chemical Physics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 20 hits
ReferencesLink to record
Permanent link

Direct link