References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

A hierarchic sparse matrix data structure for large-scale Hartree-Fock/Kohn-Sham calculationsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2007 (English)In: Journal of Computational Chemistry, ISSN 0192-8651, E-ISSN 1096-987X, Vol. 28, no 16, 2531-2537 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2007. Vol. 28, no 16, 2531-2537 p.
##### Keyword [en]

sparse matrix, C plus plus templates, Hartree-Fock, Density Functional Theory, inverse Cholesky decomposition, symmetric matrix square, electronic-structure calculations, approximate inverse preconditioners, conjugate-gradient method, consistent-field theory, density-matrix, diagonalization, search, purification, atoms
##### National Category

Theoretical Chemistry
##### Identifiers

URN: urn:nbn:se:kth:diva-16288DOI: 10.1002/jcc.20691ISI: 000250972500003ScopusID: 2-s2.0-35948953260OAI: oai:DiVA.org:kth-16288DiVA: diva2:334330
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
##### Note

QC 20100817Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2011-08-30Bibliographically approved
##### In thesis

A hierarchic sparse matrix data structure for Hartree-Fock/Kohn-Sham calculations is presented. The data structure makes the implementation of matrix manipulations needed for large systems faster, easier, and more maintainable without loss of performance. Algorithms for symmetric matrix square and inverse Cholesky decomposition within the hierarchic framework are also described. The presented data structure is general; in addition to its use in HartreeFock/Kohn-Sham calculations, it may also be used in other research areas where matrices with similar properties are encountered. The applicability of the data structure to ab initio calculations is shown with help of benchmarks on water droplets and graphene nanoribbons.

1. Matrix Algebra for Quantum Chemistry$(function(){PrimeFaces.cw("OverlayPanel","overlay114034",{id:"formSmash:j_idt647:0:j_idt651",widgetVar:"overlay114034",target:"formSmash:j_idt647:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Quantum Chemistry for Large Systems$(function(){PrimeFaces.cw("OverlayPanel","overlay12865",{id:"formSmash:j_idt647:1:j_idt651",widgetVar:"overlay12865",target:"formSmash:j_idt647:1:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Sparse Matrices in Self-Consistent Field Methods$(function(){PrimeFaces.cw("OverlayPanel","overlay11291",{id:"formSmash:j_idt647:2:j_idt651",widgetVar:"overlay11291",target:"formSmash:j_idt647:2:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Fock Matrix Construction for Large Systems$(function(){PrimeFaces.cw("OverlayPanel","overlay11442",{id:"formSmash:j_idt647:3:j_idt651",widgetVar:"overlay11442",target:"formSmash:j_idt647:3:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});