Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The behavior of the free boundary near the fixed boundary for a minimization problem
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).ORCID iD: 0000-0002-1316-7913
2007 (English)In: Calculus of Variations and Partial Differential Equations, ISSN 0944-2669, E-ISSN 1432-0835, Vol. 28, no 1, 15-31 p.Article in journal (Refereed) Published
Abstract [en]

We show that the free boundary partial derivative{u > 0}, arising from the minimizer(s) u, of the functional J(u) = (Omega)integral vertical bar del u vertical bar(2) + lambda(2)(+)chi{u > 0} + lambda(2)(-)chi{u < 0}. approaches the (smooth) fixed boundary a Omega tangentially, at points where the Dirichlet data vanishes along with its gradient.

Place, publisher, year, edition, pages
2007. Vol. 28, no 1, 15-31 p.
Keyword [en]
free boundary problems, regularity, contact points, regularity
Identifiers
URN: urn:nbn:se:kth:diva-16291DOI: 10.1007/s00526-006-0029-xISI: 000242610000002Scopus ID: 2-s2.0-33749506558OAI: oai:DiVA.org:kth-16291DiVA: diva2:334333
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Shahgholian, Henrik.

Search in DiVA

By author/editor
Shahgholian, Henrik.
By organisation
Mathematics (Div.)
In the same journal
Calculus of Variations and Partial Differential Equations

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 26 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf