Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Theoretical investigation of bulk ordering and surface segregation in Ag-Pd and other isoelectornic alloys
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics.ORCID iD: 0000-0002-9920-5393
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics.
2007 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 75, no 5Article in journal (Refereed) Published
Abstract [en]

Bulk ordering in Ag-Pd and other isoelectronic alloys is investigated theoretically by a number of first-principles techniques. The electronic structure and total energy have been calculated by the Green's function Korringa-Kohn-Rostocker and full-potential plane wave methods. The effective cluster interactions of the Ising-type Hamiltonian have been obtained by the screened generalized perturbation method. They reveal a complex concentration-dependent ordering behavior in these alloys due to band filling and Fermi surface effects. In particular we show that long-period superstructures are gradually stabilized by a great number of relatively weak long-range effective pair- and three-site interactions, which can be seen as collective effect. A similar complex concentration dependence is also found for surfaces of Ag-Pd alloys. The surface composition of the (111) and (100) surface of Ag75Pd25, Ag50Pd50, and Ag33Pd67 alloys have been then investigated by the surface Green's function technique and the screened generalized perturbation method for the effective interactions of the Ising-type Hamiltonian and the grand canonical Monte Carlo method for statistical thermodynamic simulations at finite temperatures. We compare our results with experimental data and other theoretical calculations.

Place, publisher, year, edition, pages
2007. Vol. 75, no 5
Keyword [en]
transition-metal alloys, anomalous temperature-dependence, diffuse-scattering intensity, random substitutional alloys, total-energy calculations, augmented-wave method, short-range order, electronic-structure, structural stability, basis-set
National Category
Condensed Matter Physics Metallurgy and Metallic Materials
Identifiers
URN: urn:nbn:se:kth:diva-16416DOI: 10.1103/PhysRevB.75.054113ISI: 000244532600033Scopus ID: 2-s2.0-33847292313OAI: oai:DiVA.org:kth-16416DiVA: diva2:334458
Note

QC 20100525

Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Korzhavyi, Pavel A.

Search in DiVA

By author/editor
Ruban, Andrei V.Korzhavyi, Pavel A.Johansson, Börje
By organisation
Applied Material Physics
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Condensed Matter PhysicsMetallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 31 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf