Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electronic and molecular surface structure of a polyene-diphenylaniline dye adsorbed from solution onto nanoporous TiO2
Show others and affiliations
2007 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 111, no 24, 8580-8586 p.Article in journal (Refereed) Published
Abstract [en]

The surface electronic and molecular structure of a new organic chromophore useful for dye-sensitized nanostructured solar cells has been investigated by means of electron spectroscopy. Initially the use of a simple molecular system containing the polyene-diphenylaniline chromophore in a solar cell device was verified. The electronic and molecular surface structure of the functional dye-sensitized interface was then investigated in detail by a combination of core level spectroscopy, valence level spectroscopy, X-ray absorption spectroscopy, and resonant photoemission spectroscopy. The results indicate a dominating orientation of the molecule at the surface, having the diphenylaniline moiety pointing out from the surface. Valence level spectroscopy, X-ray absorption spectroscopy, and resonant photoemission spectroscopy were used to experimentally delineate the frontier electronic structure of the molecule, and the experimental spectra were analyzed against theoretical spectra, based on density functional theory. Together the investigation gives insight into energy matching of the molecular electronic states with respect to the TiO2 substrate as well as the localization of the frontier electronic states and the direction of the charge-transfer absorption process with regards to the TiO2 surface.

Place, publisher, year, edition, pages
2007. Vol. 111, no 24, 8580-8586 p.
Keyword [en]
solar-cells, nanocrystalline tio2, interfacial properties, photoelectron-spectroscopy, crystal-structure, charge-transfer, films, complexes, ru(dcbpy)(2)(ncs)(2), heterojunctions
Identifiers
URN: urn:nbn:se:kth:diva-16686DOI: 10.1021/jp068771yISI: 000247215200028Scopus ID: 2-s2.0-34547330059OAI: oai:DiVA.org:kth-16686DiVA: diva2:334729
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Hagfeldt, Anders
By organisation
Organic Chemistry
In the same journal
The Journal of Physical Chemistry C

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 20 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf