Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Role of architecture and molecular weight in the formation of tailor-made ultrathin multilayers using dendritic macromolecules and click chemistry
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.ORCID iD: 0000-0002-9200-8004
Show others and affiliations
2007 (English)In: Journal of Polymer Science Part A: Polymer Chemistry, ISSN 0887-624X, E-ISSN 1099-0518, Vol. 45, no 14, 2835-2846 p.Article in journal (Refereed) Published
Abstract [en]

The high efficiency and mild reaction conditions associated with the Cu(I) catalyzed cycloaddition of azides and alkynes were exploited for the covalent layer-by-layer synthesis of dendritic thin films on silicon wafers. The preparation of azide and alkyne-terminated dendrimers based on bisMPA was accomplished by a divergent strategy; combinations of these monodisperse building blocks from the 2nd to the 5th generation were used for construction of the thin films. The layer-by-layer self assembly process proceeds under ambient conditions and was monitored by ellipsometry, XPS, and ATR-IR, which showed extremely regular growth of the dendritic thin films. Film thickness could be accurately controlled by both the size/generation number of the dendrimers as well as the number of layers. In comparison with linear analogues, the growth of the dendritic films was significantly more controlled and defect-free with each layer being thinner than the corresponding films prepared from the isomeric linear polymers, demonstrating the well-defined, three-dimensional nature of the dendritic architecture.

Place, publisher, year, edition, pages
2007. Vol. 45, no 14, 2835-2846 p.
Keyword [en]
dendrimers, functionalization of polymers, layer growth, thin films, 2,2-bis(methylol)propionic acid dendrimers, chain-transfer agents, surface-confined monolayers, phase probe molecules, air-water-interface, composite films, layer, polymer, azides, copolymers
Identifiers
URN: urn:nbn:se:kth:diva-16761DOI: 10.1002/pola.22178ISI: 000247763500001Scopus ID: 2-s2.0-34547486585OAI: oai:DiVA.org:kth-16761DiVA: diva2:334804
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Malkoch, Michael

Search in DiVA

By author/editor
Malkoch, Michael
By organisation
Fibre and Polymer Technology
In the same journal
Journal of Polymer Science Part A: Polymer Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 41 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf