Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Neurotransmitter phenotype-specific expression changes in developing sympathetic neurons
Show others and affiliations
2007 (English)In: Molecular and Cellular Neuroscience, ISSN 1044-7431, E-ISSN 1095-9327, Vol. 35, no 3, p. 397-408Article in journal (Refereed) Published
Abstract [en]

During late developmental phases individual sympathetic neurons undergo a switch from noradrenergic to cholinergic neurotransmission. This phenomenon of plasticity depends on target-derived signals in vivo and is triggered by neurotrophic factors in neuronal cultures. To analyze genome-wide expression differences between the two transmitter phenotypes we employed DNA microarrays. RNA expression profiles were obtained from chick paravertebral sympathetic ganglia, treated with neurotrophin 3, glial cell line-derived neurotrophic factor or ciliary neurotrophic factor, all of which stimulate cholinergic differentiation. Results were compared with the effect of nerve growth factor, which functions as a pro-noradrenergic stimulus. The gene set common to all three comparisons defined the noradrenergic and cholinergic synexpression groups. Several functional categories, such as signal transduction, G-protein-coupled signaling, cation transport, neurogenesis and synaptic transmission, were enriched in these groups. Experiments based on the prediction that some of the identified genes play a role in the neurotransmitter switch identified bone morphogenetic protein signaling as an inhibitor of cholinergic differentiation.

Place, publisher, year, edition, pages
2007. Vol. 35, no 3, p. 397-408
Keywords [en]
acetylcholine, noradrenalin, sympathetic, neurotrophic, Microarray, nerve growth-factor, cholinergic differentiation, neural crest, in-vivo, ganglia, system, induction, cytokines, pathways, signals
Identifiers
URN: urn:nbn:se:kth:diva-16793DOI: 10.1016/j.mcn.2007.03.014ISI: 000248057600001Scopus ID: 2-s2.0-34250799884OAI: oai:DiVA.org:kth-16793DiVA, id: diva2:334836
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Lundeberg, Joakim
By organisation
Gene Technology
In the same journal
Molecular and Cellular Neuroscience

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 44 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf