Change search
ReferencesLink to record
Permanent link

Direct link
A mathematical model for the electrochemical pickling of steel
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.ORCID iD: 0000-0001-5816-2924
2007 (English)In: Journal of the Electrochemical Society, ISSN 0013-4651, Vol. 154, no 10, P108-P119 p.Article in journal (Refereed) Published
Abstract [en]

In industrial electrolytic pickling, a steel strip with oxidized surfaces is passed through an aqueous electrolyte between a configuration of electrodes, across which a potential difference is applied. The strip is thereby indirectly polarized, and electrochemical reactions at the strip surface result in the dissolution of the oxide layer and the evolution of hydrogen and oxygen. To obtain a better understanding of this process, we derive in this paper a mathematical model for predicting the potential, current density and ionic species distributions in a vertical pickling cell, as well as the oxide dissolution rate at the steel strip. The model is two dimensional, steady state and isothermal, and is based on the conservation equations for ionic species in dilute solution, involving convection, diffusion, migration and reaction. Kinetic Tafel expressions for the electrochemical gas evolving reactions at the lead anode, stainless steel cathode and at the bipolar steel strip surface are introduced. The derived model comprises six ionic species; numerical solutions for a full version and two reduced versions of this model are then obtained. Finally, the implications of the results for the actual pickling process are discussed.

Place, publisher, year, edition, pages
2007. Vol. 154, no 10, P108-P119 p.
Keyword [en]
2-phase flow model, stainless-steels, hydrogen evolution, cell
URN: urn:nbn:se:kth:diva-16896DOI: 10.1149/1.2764233ISI: 000248984700089ScopusID: 2-s2.0-34548231882OAI: diva2:334939
QC 20100525Available from: 2010-08-05 Created: 2010-08-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Cornell, Ann M.
By organisation
Applied Electrochemistry
In the same journal
Journal of the Electrochemical Society

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 45 hits
ReferencesLink to record
Permanent link

Direct link