Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Stratified turbulence forced in rotational and divergent modes
KTH, School of Engineering Sciences (SCI), Mechanics, Turbulence.
KTH, School of Engineering Sciences (SCI), Mechanics, Turbulence.ORCID iD: 0000-0002-9819-2906
2007 (English)In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 586, 83-108 p.Article in journal (Refereed) Published
Abstract [en]

We perform numerical box simulations of strongly stratified turbulence. The equations solved are the Boussinesq equations with constant Brunt-Vaisala frequency and forcing either in rotational or divergent modes, or, with another terminology, in vortical or wave modes. In both cases, we observe a forward energy cascade and inertial-range scaling of the horizontal kinetic and potential energy spectra. With forcing in rotational modes, there is approximate equipartition of kinetic energy between rotational and divergent modes in the inertial range. With forcing in divergent modes the results are sensitive to the vertical forcing wavenumber K-v(f) If k(v)(f) is sufficiently large the dynamics is very similar to the dynamics of the V V simulations which are forced in rotational modes, with approximate equipartition of kinetic energy in rotational and divergent modes in the inertial range. Frequency spectra of rotational, divergent and potential energy are calculated for individual Fourier modes. Waves are present at low horizontal wavenumbers corresponding to the largest scales in the boxes. In the inertial range, the frequency spectra exhibit no distinctive peaks in the internal wave frequency. In modes for which the vertical wavenumber is considerably larger than the horizontal wavenumber, the frequency spectra of rotational and divergent modes fall on top of each other. The simulation results indicate that the dynamics of rotational and divergent modes develop on the same time scale in stratified turbulence. We discuss the relevance of our results to atmospheric and oceanic dynamics. In particular, we review a number of observational reports indicating that stratified turbulence may be a prevalent dynamic process in the ocean at horizontal scales of the order of 10 or 100m up to several kilometres.

Place, publisher, year, edition, pages
2007. Vol. 586, 83-108 p.
Keyword [en]
kinetic-energy spectrum, homogeneous turbulence, free atmosphere, internal waves, gravity-waves, upper ocean, cascade, scales, dissipation, temperature
Identifiers
URN: urn:nbn:se:kth:diva-16950DOI: 10.1017/s0022112007007082ISI: 000249409500004Scopus ID: 2-s2.0-34547808045OAI: oai:DiVA.org:kth-16950DiVA: diva2:334993
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Brethouwer, Geert

Search in DiVA

By author/editor
Lindborg, ErikBrethouwer, Geert
By organisation
Turbulence
In the same journal
Journal of Fluid Mechanics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 34 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf