Change search
ReferencesLink to record
Permanent link

Direct link
Iron(III) complexes with a tripodal N3O ligand containing an internal base as a model for catechol intradiol-cleaving dioxygenases
Show others and affiliations
2007 (English)In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 46, no 22, 9364-9371 p.Article in journal (Refereed) Published
Abstract [en]

A bis(mu-alkoxo)-bridged dinuclear iron(III) complex [Fe(L)(NO3)](2)(NO3)(2) [1; HL = NN-bis(2-pyridylmethyl)-N-(2hydroxyethyl)amine] of the tripodal N3O ligand was prepared as a biomimetic model for the intradiol-cleaving dioxygenase enzymes. The reaction of 1 and catechol in the presence of excess triethylamine gave the catecholate (CAT) chelate b is(u -al koxo) -bridged dinuclear iron(Ill) complex [Fe(L)(CAT)12 (2). The molecular structures of complexes 1 and 2 were determined by X-ray crystallography. Diiron complexes 1 and 2 contain the same bis(u-alkoxo)diiron diamond core. All heteroatoms (N3O) of the ligand are coordinated to the iron center in complex 1 with two pyridine nitrogen atoms on the axial bonds, while one of the pyridyl arms of the ligand is left uncoordinated in complex 2. The interaction of the diiron complex 1 and 3,5-di-tert-butylcatechol (H2DBC) was investigated by electronic and mass spectroscopy. Complex 1 displays the intradiol-cleaving dioxygenase activity, and the coordinate ethoxyl arm of the ligand is capable of accepting the proton from catechol, which mimics the function of Tyr447 in the. protocatechuate 3,4-dioxygenase as an internal base. The spectrop h oto metric titration experiment indicates the relatively low demand of the external base (0.8 equiv based on Fe3+) for attaining the highest dioxygenase activity of complex 1. The reaction rate of the reactive intermediate [Fe(HL)(DBC)](+) with dioxygen is 0.38 M-1 s(-1) determined by kinetic studies.

Place, publisher, year, edition, pages
2007. Vol. 46, no 22, 9364-9371 p.
Keyword [en]
reactive functional-model, nonheme iron enzymes, protocatechuate 3,4-dioxygenase, crystal-structure, active-sites, (catecholato)iron(iii) complexes, tetradentate ligands, angstrom resolution, oxidative cleavage, 1,2-dioxygenase
URN: urn:nbn:se:kth:diva-17057DOI: 10.1021/ic700664uISI: 000250345400046ScopusID: 2-s2.0-35848936091OAI: diva2:335100
QC 20100525Available from: 2010-08-05 Created: 2010-08-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Sun, Licheng
By organisation
Organic Chemistry
In the same journal
Inorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 16 hits
ReferencesLink to record
Permanent link

Direct link