Change search
ReferencesLink to record
Permanent link

Direct link
Polynomials with the half-plane property and matroid theory
2007 (English)In: Advances in Mathematics, ISSN 0001-8708, E-ISSN 1090-2082, Vol. 216, no 1, 302-320 p.Article in journal (Refereed) Published
Abstract [en]

A polynomial f is said to have the half-plane property if there is an open half-plane H subset of C, whose boundary contains the origin, such that f is non-zero whenever all the variables are in H. This paper answers several open questions relating multivariate polynomials with the half-plane property to matroid theory. (1) We prove that the support of a multivariate polynomial with the half-plane property is a jump system. This answers an open question posed by Choe, Oxley, Sokal and Wagner and generalizes their recent result claiming that the same is true whenever the polynomial is also homogeneous. (2) We prove that a multivariate multi-affine polynomial f is an element of R[z(1),..., z(n)] has the half-plane property (with respect to the upper half-plane) if and only if partial derivative f/partial derivative(zi)(x)center dot partial derivative f/partial derivative(zj)(x)-partial derivative(2)f/partial derivative(zi)partial derivative(zj)(x)center dot f(x)>= 0 for all x is an element of R-n and 1 <= i, j <= n. This is used to answer two open questions posed by Choe and Wagner regarding strongly Rayleigh matroids. (3) We prove that the Fano matroid is not the support of a polynomial with the half-plane property. This is the first instance of a matroid which does not appear as the support of a polynomial with the half-plane property and answers a question posed by Choe et al. We also discuss further directions and open problems.

Place, publisher, year, edition, pages
2007. Vol. 216, no 1, 302-320 p.
Keyword [en]
half-plane property, matroid, jump system, support, newton polytope, stable polynomial, rayleigh property, multivariate polynomials, jump systems, inequality
URN: urn:nbn:se:kth:diva-17069DOI: 10.1016/j.aim.2007.05.011ISI: 000250413100012OAI: diva2:335112
QC 20100525Available from: 2010-08-05 Created: 2010-08-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Bränden, Petter
In the same journal
Advances in Mathematics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 23 hits
ReferencesLink to record
Permanent link

Direct link