CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt164",{id:"formSmash:upper:j_idt164",widgetVar:"widget_formSmash_upper_j_idt164",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt165_j_idt168",{id:"formSmash:upper:j_idt165:j_idt168",widgetVar:"widget_formSmash_upper_j_idt165_j_idt168",target:"formSmash:upper:j_idt165:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Polynomials with the half-plane property and matroid theoryPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2007 (English)In: Advances in Mathematics, ISSN 0001-8708, E-ISSN 1090-2082, Vol. 216, no 1, 302-320 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2007. Vol. 216, no 1, 302-320 p.
##### Keyword [en]

half-plane property, matroid, jump system, support, newton polytope, stable polynomial, rayleigh property, multivariate polynomials, jump systems, inequality
##### Identifiers

URN: urn:nbn:se:kth:diva-17069DOI: 10.1016/j.aim.2007.05.011ISI: 000250413100012OAI: oai:DiVA.org:kth-17069DiVA: diva2:335112
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt472",{id:"formSmash:j_idt472",widgetVar:"widget_formSmash_j_idt472",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt478",{id:"formSmash:j_idt478",widgetVar:"widget_formSmash_j_idt478",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt484",{id:"formSmash:j_idt484",widgetVar:"widget_formSmash_j_idt484",multiple:true});
##### Note

QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2017-12-12Bibliographically approved

A polynomial f is said to have the half-plane property if there is an open half-plane H subset of C, whose boundary contains the origin, such that f is non-zero whenever all the variables are in H. This paper answers several open questions relating multivariate polynomials with the half-plane property to matroid theory. (1) We prove that the support of a multivariate polynomial with the half-plane property is a jump system. This answers an open question posed by Choe, Oxley, Sokal and Wagner and generalizes their recent result claiming that the same is true whenever the polynomial is also homogeneous. (2) We prove that a multivariate multi-affine polynomial f is an element of R[z(1),..., z(n)] has the half-plane property (with respect to the upper half-plane) if and only if partial derivative f/partial derivative(zi)(x)center dot partial derivative f/partial derivative(zj)(x)-partial derivative(2)f/partial derivative(zi)partial derivative(zj)(x)center dot f(x)>= 0 for all x is an element of R-n and 1 <= i, j <= n. This is used to answer two open questions posed by Choe and Wagner regarding strongly Rayleigh matroids. (3) We prove that the Fano matroid is not the support of a polynomial with the half-plane property. This is the first instance of a matroid which does not appear as the support of a polynomial with the half-plane property and answers a question posed by Choe et al. We also discuss further directions and open problems.

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1189",{id:"formSmash:j_idt1189",widgetVar:"widget_formSmash_j_idt1189",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1242",{id:"formSmash:lower:j_idt1242",widgetVar:"widget_formSmash_lower_j_idt1242",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1243_j_idt1245",{id:"formSmash:lower:j_idt1243:j_idt1245",widgetVar:"widget_formSmash_lower_j_idt1243_j_idt1245",target:"formSmash:lower:j_idt1243:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});