Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Time domain particle tracking methods for simulating transport with retention and first-order transformation
KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering, Water Resources Engineering.
2008 (English)In: Water resources research, ISSN 0043-1397, E-ISSN 1944-7973, Vol. 44, no 1Article in journal (Refereed) Published
Abstract [en]

Particle tracking in the time domain has received increasing attention as a technique for robustly simulating transport along one-dimensional subsurface pathways. Using a stochastic Lagrangian perspective, integral representations of transport including the effects of advection, longitudinal dispersion, and a broad class of retention models are derived; Monte Carlo sampling of that integral leads directly to new time domain particle tracking algorithms that represent a wide range of physical phenomena. Retention-time distributions are compiled for key retention models. An extension to accommodate linear transformations such as decay chains is also introduced. Detailed testing using first-order decay chains and four retention models (equilibrium sorption, limited diffusion, unlimited diffusion, and first-order kinetic sorption) demonstrate that the method is highly accurate. Simulations using flow fields produced by large-scale discrete-fracture network simulations, a transport problem that is difficult for conventional algorithms, demonstrate that the new algorithms are robust and highly efficient.

Place, publisher, year, edition, pages
2008. Vol. 44, no 1
Keyword [en]
random-walk method, solute transport, dispersion, flow, diffusion, fractures, aquifers, network, media
Identifiers
URN: urn:nbn:se:kth:diva-17264DOI: 10.1029/2007wr005944ISI: 000252184500005Scopus ID: 2-s2.0-39749154080OAI: oai:DiVA.org:kth-17264DiVA: diva2:335307
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Cvetkovic, Vladimir
By organisation
Water Resources Engineering
In the same journal
Water resources research

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 44 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf