kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Experimental and numerical study of flameless combustion in a model gas turbine combustor
KTH, School of Engineering Sciences (SCI), Mechanics, Fluid Mechanics of Industrial Processes.
Show others and affiliations
2008 (English)In: Combustion Science and Technology, ISSN 0010-2202, E-ISSN 1563-521X, Vol. 180, no 2, p. 279-295Article in journal (Refereed) Published
Abstract [en]

Flameless combustion is an attractive solution to address existing problems of emissions and stability when operating gas turbine combustors. Theoretical, numerical and experimental approaches were used to study the flameless gas turbine combustor. The emissions and combustion stability were measured and the limits of the flameless regime are discussed. Using experimental techniques and Large Eddy Simulation (LES), detailed knowledge of the flow field and the oxidation dynamics was obtained. In particular the relation between the turbulent coherent structures dynamics and the flameless oxidation was highlighted. A model for flameless combustion simulations including detailed chemistry was derived. The theoretical analysis of the flameless combustion provides 2 non-dimensional numbers that define the range of the flameless mode. It was determined that the mixture that is ignited and burnt is composed of similar to 50% of fresh gases and similar to 50% vitiated gases.

Place, publisher, year, edition, pages
2008. Vol. 180, no 2, p. 279-295
Keywords [en]
flameless combustion, gas turbine, large eddy simulation, PIV, tabulated complex chemistry, large-eddy simulation, turbulent, coflow, vortex, jets, hot
Identifiers
URN: urn:nbn:se:kth:diva-17269DOI: 10.1080/00102200701739164ISI: 000252310500005Scopus ID: 2-s2.0-38149090173OAI: oai:DiVA.org:kth-17269DiVA, id: diva2:335312
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Fuchs, Laszlo
By organisation
Fluid Mechanics of Industrial Processes
In the same journal
Combustion Science and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 289 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf