Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Universal asymptotics in hyperbolicity breakdown
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).
2008 (English)In: Nonlinearity, ISSN 0951-7715, E-ISSN 1361-6544, Vol. 21, no 3, 557-586 p.Article in journal (Refereed) Published
Abstract [en]

We study a scenario for the disappearance of hyperbolicity of invariant tori in a class of quasi-periodic systems. In this scenario, the system loses hyperbolicity because two invariant directions come close to each other, losing their regularity. In a recent paper, based on numerical results, Haro and de la Llave (2006 Chaos 16 013120) discovered a quantitative universality in this scenario, namely, that the minimal angle between the two invariant directions has a power law dependence on the parameters and the exponents of the power law are universal. We present an analytic proof of this result.

Place, publisher, year, edition, pages
2008. Vol. 21, no 3, 557-586 p.
Keyword [en]
spectral subbundles
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-17401DOI: 10.1088/0951-7715/21/3/010ISI: 000254305500012OAI: oai:DiVA.org:kth-17401DiVA: diva2:335445
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2012-04-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full texthttp://dx.doi.org/10.1088/0951-7715/21/3/010

Search in DiVA

By author/editor
Bjerklöv, KristianSaprykina, Maria
By organisation
Mathematics (Div.)
In the same journal
Nonlinearity
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 72 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf