Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The use of global modes to understand transition and perform flow control
KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control.ORCID iD: 0000-0001-7864-3071
2008 (English)In: Physics of fluids, ISSN 1070-6631, E-ISSN 1089-7666, Vol. 20, no 3Article in journal (Refereed) Published
Abstract [en]

The stability of nonparallel flows is considered using superposition of global modes. When perturbed by the worst case initial condition, these flows often exhibit a large transient growth associated with the development of wave packets. The global modes of the systems also provide a good starting point for the design of reduced order models used to control the growing disturbances. Three recent investigations are reviewed. The first example is the growth of a wave packet on a falling liquid sheet. The optimal perturbation analysis shows that the worst case initial condition is a localized disturbance that creates a propagating wave packet that hits the downstream end, regenerating a wave packet upstream through a global pressure pulse. Second, we consider two-dimensional disturbances in the Blasius boundary layer. It is found that a wave packet is optimally excited by an initial condition consisting of localized backward leaning Orr structures. Finally, the control of a globally unstable boundary-layer flow along a shallow cavity is considered. The disturbance propagation is associated with the development of a wave packet along the cavity shear layer, unstable to the Kelvin-Helmholtz mechanism, followed by a global cycle related to the two unstable global modes. Direct numerical simulations of this flow are coupled to a measurement feedback controller, which senses the wall shear stress at the downstream lip of the cavity and provides the actuation at the upstream lip. A reduced order model for the control is obtained by a projection on the least stable global eigenmodes. The linear-quadratic-Gaussian controller is run in parallel to the Navier-Stokes time integration and it is shown to damp out the global oscillations.

Place, publisher, year, edition, pages
2008. Vol. 20, no 3
Keyword [en]
boundary-layer-flow, instabilities, reduction
Identifiers
URN: urn:nbn:se:kth:diva-17420DOI: 10.1063/1.2832773ISI: 000254537600002Scopus ID: 2-s2.0-41849090400OAI: oai:DiVA.org:kth-17420DiVA: diva2:335464
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Henningson, Dan S.

Search in DiVA

By author/editor
Henningson, Dan S.
By organisation
Stability, Transition and Control
In the same journal
Physics of fluids

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 26 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf