Change search
ReferencesLink to record
Permanent link

Direct link
A methodology to study the morphologic changes in lesions during in vitro angioplasty using MRI and image processing
Show others and affiliations
2008 (English)In: Medical Image Analysis, ISSN 1361-8415, E-ISSN 1361-8423, Vol. 12, no 2, 163-173 p.Article in journal (Refereed) Published
Abstract [en]

The assessment of morphologic changes in atherosclerotic lesions during interventional procedures such as transluminal balloon angioplasty is an issue of highest clinical importance. We propose a methodology that allows realistic 3D morphomechanical modeling of the vessel, the plaque and the lumen at different stages of in vitro angioplasty. We elaborate on a novel device designed to guide angioplasty under controlled experimental conditions. The device allows to reproduce in vivo conditions as good as possible, i.e. axial in situ pre-stretch, 100 mmHg intraluminal pressure, 37 degrees C Tyrode solution, balloon inflation without external constraints using a high-pressure syringe and contrast medium. With a standard 1.5 T MR-system we accomplish multi-spectral images at different stages of the angioplasty experiment. After MR image acquisition the specimen is used for histopathological analysis and biomechanical tests. A segmentation process is used to generate NURBS-based 3D geometric models of the individual vessel and plaque components at different balloon pressures. Tissue components are segmented automatically using generalized gradient vector flow active contours. We investigated 10 human femoral arteries. The effects of balloon compression on the individual artery components is particularly described for two obstructed arteries with an intact collagenous cap, a pronounced lipid pool and with calcification. In both arteries we observe a significant increase in lumen area after angioplasty. Dissection between intima and media and reduction of the lipid pool are primary mechanisms of dilatation. This methodology provides a basis for studying plaque biomechanics under supra-physiological loading conditions. It has the potential to improve and validate finite element models of atherosclerotic plaques which may allow a better prediction of angioplasty procedures.

Place, publisher, year, edition, pages
2008. Vol. 12, no 2, 163-173 p.
Keyword [en]
angioplasty, atherosclerotic plaque, image processing, in vitro, magnetic resonance imaging, atherosclerotic plaque characterization, gradient vector flow, intravascular ultrasound, balloon angioplasty, magnetic-resonance, computed-tomography, 3-d reconstruction, tissue-components, vulnerable, plaque, active contours
URN: urn:nbn:se:kth:diva-17556DOI: 10.1016/ 000256156500006ScopusID: 2-s2.0-41849147897OAI: diva2:335600
QC 20100525Available from: 2010-08-05 Created: 2010-08-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Holzapfel, Gerhard A.
By organisation
In the same journal
Medical Image Analysis

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 39 hits
ReferencesLink to record
Permanent link

Direct link