Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Feasibility study of nanoscaled optical waveguide based on near-resonant surface plasmon polariton
KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.ORCID iD: 0000-0002-3368-9786
KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
2008 (English)In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 16, no 10, 7499-7507 p.Article in journal (Refereed) Published
Abstract [en]

Currently subwavelength surface plasmon polariton (SPP) waveguides under intensive theoretical and experimental studies are mostly based on the geometrical singularity property of such waveguides. Typical examples include the metal-insulator-metal based waveguide and the metallic fiber. Both types of waveguides support a mode with divergent propagation constant as the waveguides' geometry (metal gap distance or fiber radius) shrinks to zero. Here we study an alternative way of achieving subwavelength confinement through deploying two materials with close but opposite epsilon values. The interface between such two materials supports a near-resonant SPP. By examining the relationship between mode propagation loss and the mode field size for both planar and fiber waveguides, we show that waveguides based on near-resonant SPP can be as attractive as those solely based on geometrical tailoring. We then explicitly study a silver and silicon based waveguide with a 25nm core size at 600nm wavelength, in its properties like single-mode condition, mode loss and group velocity. It is shown that loss values of both materials have to be decreased by similar to 1000 times in order to have 1dB/mu m propagation loss. Hence we point out the necessity of novel engineering of low-loss metamaterials, or introducing gain, for practical applications of such waveguides. Due to the relatively simple geometry, the proposed near-resonant SPP waveguides can be a potential candidate for building optical circuits with a density close to the electronic counterpart.

Place, publisher, year, edition, pages
2008. Vol. 16, no 10, 7499-7507 p.
Keyword [en]
negative dielectric-constant
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-17580ISI: 000256469800076PubMedID: 18545455Scopus ID: 2-s2.0-43849113243OAI: oai:DiVA.org:kth-17580DiVA: diva2:335624
Note
QC 20100525 QC 20111129Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

PubMedScopus

Authority records BETA

Yan, Min

Search in DiVA

By author/editor
Yan, MinThylén, LarsQiu, Min
By organisation
Microelectronics and Applied Physics, MAP
In the same journal
Optics Express
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

pubmed
urn-nbn

Altmetric score

pubmed
urn-nbn
Total: 47 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf