References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt152",{id:"formSmash:upper:j_idt152",widgetVar:"widget_formSmash_upper_j_idt152",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt153_j_idt156",{id:"formSmash:upper:j_idt153:j_idt156",widgetVar:"widget_formSmash_upper_j_idt153_j_idt156",target:"formSmash:upper:j_idt153:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Applications of stable polynomials to mixed determinants: Johnson's conjectures, unimodality, and symmetrized Fischer productsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2008 (English)In: Duke mathematical journal, ISSN 0012-7094, Vol. 143, no 2, 205-223 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2008. Vol. 143, no 2, 205-223 p.
##### Keyword [en]

matrices
##### Identifiers

URN: urn:nbn:se:kth:diva-17582DOI: 10.1215/00127094-2008-018ISI: 000256487000001ScopusID: 2-s2.0-45849094080OAI: oai:DiVA.org:kth-17582DiVA: diva2:335626
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt455",{id:"formSmash:j_idt455",widgetVar:"widget_formSmash_j_idt455",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt461",{id:"formSmash:j_idt461",widgetVar:"widget_formSmash_j_idt461",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt467",{id:"formSmash:j_idt467",widgetVar:"widget_formSmash_j_idt467",multiple:true});
##### Note

QC 20100525Available from: 2010-08-05 Created: 2010-08-05Bibliographically approved

For (n x n)-matrices A and B, define eta(A, B) = Sigma(S)det(A[S])det(B[S']), where the summation is over all subsets of {1,..., n}, S' is the complement of S', and A [S] is the principal submatrix of A with rows and columns indexed by S. We prove that if A >= 0 and B is Hermitian, then (1) the polynomial eta(zA, -B) has all real roots; (2) the latter polynomial has as many positive, negative, and zero roots (counting multiplicities) as suggested by the inertia of B if A > 0; and (3) for 1 <= i <= n, the roots of eta(zA[{1}'], -B[{i}']) interlace those of eta(zA, -B). Assertions (1) - (3) solve three important conjectures proposed by C. R. Johnson in the mid-1980s in [20, pp. 169, 170], [21]. Moreover, we substantially extend these results to tuples of matrix pencils and real stable polynomials. In the process, we establish unimodality properties in the sense of majorization for the coefficients of homogeneous real stable polynomials, and as an application, we derive similar properties for symmetrized Fischer products of positive-definite matrices. We also obtain Laguerre-type inequalities for characteristic polynomials of principal submatrices of arbitrary Hermitian matrices which considerably generalize a certain subset of the Hadamard., Fischer, and Koteljanskii inequalities for principal minors of positive-definite matrices. Finally, we propose Lax-type problems for real stable polynomials and mixed determinants.

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1196",{id:"formSmash:lower:j_idt1196",widgetVar:"widget_formSmash_lower_j_idt1196",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1197_j_idt1199",{id:"formSmash:lower:j_idt1197:j_idt1199",widgetVar:"widget_formSmash_lower_j_idt1197_j_idt1199",target:"formSmash:lower:j_idt1197:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});