Change search
ReferencesLink to record
Permanent link

Direct link
Ion mass dependence of irradiation-induced local creation of ferromagnetism in Fe60Al40 alloys
Show others and affiliations
2008 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 77, no 17Article in journal (Refereed) Published
Abstract [en]

Ion irradiation of Fe60Al40 alloys results in the phase transformation from the paramagnetic, chemically ordered B2 phase to the ferromagnetic, chemically disordered A2 phase. The magnetic phase transformation is related to the number of displacements per atom (dpa) during the irradiation. For heavy ions (Ar+, Kr+, and Xe+), a universal curve is observed with a steep increase in the fraction of the ferromagnetic phase that reaches saturation, i.e., a complete phase transformation, at about 0.5 dpa. This proves the purely ballistic nature of the disordering process. If light ions are used (He+ and Ne+), a pronounced deviation from the universal curve is observed. This is attributed to bulk vacancy diffusion from the dilute collision cascades, which leads to a partial recovery of the thermodynamically favored B2 phase. Comparing different noble gas ion irradiation experiments allows us to assess the corresponding counteracting contributions. In addition, the potential to create local ferromagnetic areas embedded in a paramagnetic matrix is demonstrated.

Place, publisher, year, edition, pages
2008. Vol. 77, no 17
Keyword [en]
magnetic nanostructures, films, media, implantation, order, al
URN: urn:nbn:se:kth:diva-17607DOI: 10.1103/PhysRevB.77.174430ISI: 000256763800084ScopusID: 2-s2.0-44449101163OAI: diva2:335651
QC 20100525Available from: 2010-08-05 Created: 2010-08-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Rao, K. V.
By organisation
Engineering Material Physics
In the same journal
Physical Review B. Condensed Matter and Materials Physics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 25 hits
ReferencesLink to record
Permanent link

Direct link