Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Thermocapillary convection and phase change in welding
KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics.ORCID iD: 0000-0003-3336-1462
KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics.ORCID iD: 0000-0003-2830-0454
2008 (English)In: International journal of numerical methods for heat & fluid flow, ISSN 0961-5539, E-ISSN 1758-6585, Vol. 18, no 3-4, 378-386 p.Article in journal (Refereed) Published
Abstract [en]

Purpose - In welding there is an intricate coupling between the composition of the material and the shape and depth of the weld pool. In certain materials, the weld pool may not penetrate the material easily, so that it is difficult or impossible to weld, while other seemingly quite similar materials may be well suited for welding. This is due to the convective heat transfer in the melt where the flow is driven primarily by surface tension gradients. This paper aims to study how surface active agents affect the flow and thus the welding properties by surveying some recent 3D simulations of weld pools. Design/methodology/approach - Some basic concepts in the modelling of flow in a weld pool are reviewed. The mathematical models for a convecting melt, with a detailed model for the surface tension and the Marangoni stress in the presence of surfactants, are presented. The effect of the sign of the Marangoni coefficient on the flow pattern, and thus, via melting and freezing, on the shape of the weld pool, is discussed. Findings - It is seen that it is beneficial to have surfactants present at the pool surface, in order to have good penetration. Results from a refined surface tension model that accounts for non-equilibrium redistribution of surfactants are presented. It is seen that the surfactant concentration is significantly modified by the fluid flow. Thereby, the effective surface tension and the Marangoni stresses are altered, and the redistribution of surfactants will affect the penetration depth of the weld pool. Originality/value - The importance of surfactants for weld pool shapes, and in particular the convective redistribution of surfactants, is clarified.

Place, publisher, year, edition, pages
2008. Vol. 18, no 3-4, 378-386 p.
Keyword [en]
welding, convection, phase transformations, surface-tension, metal
Identifiers
URN: urn:nbn:se:kth:diva-17616DOI: 10.1108/09615530810853637ISI: 000256864200006Scopus ID: 2-s2.0-43449107944OAI: oai:DiVA.org:kth-17616DiVA: diva2:335660
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Amberg, GustavDo-Quang, Minh

Search in DiVA

By author/editor
Amberg, GustavDo-Quang, Minh
By organisation
Physicochemical Fluid Mechanics
In the same journal
International journal of numerical methods for heat & fluid flow

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 94 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf