Change search
ReferencesLink to record
Permanent link

Direct link
Fingerprinting the degradation product patterns of different polyester-ether networks by electrospray ionization mass spectrometry
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.ORCID iD: 0000-0002-7790-8987
Centre of Polymer and Carbon Materials, Polish Academy of Sciences.
Centre of Polymer and Carbon Materials, Polish Academy of Sciences.
Show others and affiliations
2008 (English)In: Journal of Polymer Science Part A: Polymer Chemistry, ISSN 0887-624X, E-ISSN 1099-0518, Vol. 46, no 13, 4617-4629 p.Article in journal (Refereed) Published
Abstract [en]

Fingerprinting of the degradation product patterns by electrospray ionization mass spectrometry (ESI-MS) was evaluated as a tool to monitor the degree of degradation in polyester-ether networks. Four different crosslinked caprolactone (CL) and/ or 1,5-dioxepan-2-one (DXO) networks were subjected to hydrolytic degradation in aqueous solution at 37 degrees C for up to 147 days. After predetermined time periods, the water-soluble degradation products were analyzed by ESI-MS and tandem ESI-MS. In addition, changes in pH, mass loss, and copolymer composition were determined. In the case of more slowly hydrolyzed CL-rich (co)polymers, CL and/or DXO oligomers terminated by hydroxyl and carboxyl end groups were predominantly formed as degradation products. However, on prolonged hydrolysis oligomers with attached crosslinking agent dominated the degradation product patterns of more easily hydrolyzed DXO-rich (co)polymers. It was shown that in the recorded mass spectra the variation of intensities in the series of ions corresponding to DXO and CL/DXO oligomers with or without attached crosslinking agent could be utilized to monitor the extent of hydrolytic degradation in the polyester matrix and the disruption of the network structure.

Place, publisher, year, edition, pages
2008. Vol. 46, no 13, 4617-4629 p.
Keyword [en]
biocompatibility, crosslinking, degradation, mass spectrometry, polyesters, molecular-weight products, in-vitro degradation, epsilon-caprolactone, matrix changes, 1, 5-dioxepan-2-one, polymers, poly(epsilon-caprolactone), polyethylene, polylactide, delivery
National Category
Polymer Chemistry Polymer Technologies
URN: urn:nbn:se:kth:diva-17642DOI: 10.1002/pola.22796ISI: 000257153500033ScopusID: 2-s2.0-46349108984OAI: diva2:335686

QC 20100525

Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2016-05-30Bibliographically approved
In thesis
1. Controlled Degradation of Polyester-Ethers Revealed by Mass Spectrometry Techniques
Open this publication in new window or tab >>Controlled Degradation of Polyester-Ethers Revealed by Mass Spectrometry Techniques
2008 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

The use of degradable biomedical materials in e.g. tissue engineering and controlled drug delivery has changed medical science during recent decades. The key question is to adapt the material with respect to mechanical properties, surface characteristics, and degradation profile to suit its intended application. Products formed during the degradation of bioresorbable materials are generally considered non-toxic and they are excreted from the human body. However, large amounts of specific degradation products such as hydroxyacids and oligomers may induce a pH decrease and a subsequent inflammatory response at the implantation site.


In this study, macromolecular design and a combination of cross-linking and adjusted hydrophilicity are utilized as tools to control and tailor the degradation rate and the subsequent release of degradation products from polyester-ethers. A series of different homo- and copolymers of e-caprolactone (CL) and 1,5-dioxepan-2-one (DXO) were synthesized and their hydrolytic degradation was monitored in aqueous media at 37 °C for up to 546 days. The low and medium molar mass degradation products released during hydrolysis were monitored by various mass spectrometry techniques. The materials studied included linear DXO/CL triblock and multiblock copolymers, PCL and PDXO linear homopolymers, and cross-linked homo- and random copolymers of CL/DXO where 2,2’-bis-(ε-caprolactone-4-yl) propane (BCP) was used as a cross-linking agent.


The results show that macromolecular engineering and controlled hydrophilicity of cross-linked networks are useful tools for customizing the release rate of acidic degradation products. Thereby, the formation of local acidic environments is prevented and the risk of inflammatory responses in the body is reduced.

Abstract [sv]

Läkarvetenskapen har under de senaste årtiondena förändrats genom användandet av nedbrytbara biomedicinska material inom t.ex. vävnadsersättning och kontrollerad läkemedelsfrisättning. Nyckeln är att anpassa materialets mekaniska egenskaper, ytegenskaper och nedbrytningsprofil för den tilltänkta tillämpningen. Produkterna som bildas under nedbrytningen av bioresorberbara material anses generellt vara icke-toxiska och utsöndras ur människokroppen, men stora mängder specifika nedbrytningsprodukter som t.ex. hydroxysyror kan orsaka en pH-sänkning och därmed en inflammatorisk reaktion vid implantationsplatsen.


I detta arbete används makromolekylär design och en kombination av tvärbindning och anpassad hydrofilicitet som verktyg för att kontrollera och skräddarsy nedbrytningshastigheten och den efterföljande frisättningen av nedbrytningsprodukter från polyester-etrar. En serie av olika homo- och sampolymerer av e-kaprolakton (CL) och 1,5-dioxepan-2-on (DXO) syntetiserades och deras hydrolytiska nedbrytning studerades i vattenlösning vid 37 °C i upp till 546 dagar. De låg- och medelmolekylära nedbrytningsprodukterna som frisattes under hydrolysen analyserades med olika masspektrometritekniker. Materialen som undersöktes inkluderade linjära DXO/CL triblock- och multiblocksampolymerer, linjära PCL och PDXO homopolymerer, samt tvärbundna homo- och slumpvisa sampolymerer av CL och DXO där 2,2’-bis(e-kaprolakton-4-yl)propan (BCP) användes som tvärbindare.


Resultaten visar att makromolekylär design och tvärbundna nätverk med kontrollerad hydrofilicitet är användbara verktyg för att skräddarsy frisättningshastigheten av sura nedbrytningsprodukter. Därmed kan bildandet av lokalt sura miljöer förhindras och risken för inflammatoriska reaktioner i kroppen minskas.


Place, publisher, year, edition, pages
Stockholm: KTH, 2008. 59 p.
Trita-CHE-Report, ISSN 1654-1081 ; 2008:57
Degradation products, biocompatibility, -caprolactone, 1, 5-dioxepan-2-one, 6-hydroxyhexanoic acid, 3-(2-hydroxyethoxy)propanoic acid, oligomers
National Category
Polymer Chemistry
urn:nbn:se:kth:diva-4898 (URN)978-91-7415-098-8 (ISBN)
Public defence
2008-09-26, F3, KTH, Lindstedtsvägen 26, Stockholm, 10:00 (English)
QC 20100812Available from: 2008-09-17 Created: 2008-09-17 Last updated: 2010-08-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Höglund, AndersHakkarainen, MinnaAlbertsson, Ann-Christine
By organisation
Fibre and Polymer Technology
In the same journal
Journal of Polymer Science Part A: Polymer Chemistry
Polymer ChemistryPolymer Technologies

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 81 hits
ReferencesLink to record
Permanent link

Direct link