Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
First-principles solution to the problem of Mo lattice stability
KTH, School of Engineering Sciences (SCI), Theoretical Physics, Condensed Matter Theory.ORCID iD: 0000-0001-7531-3210
2008 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 77, no 22Article in journal (Refereed) Published
Abstract [en]

The energy differences between the ground state body-centered structure and closed-packed face-centered structure for transition metals in the middle of the series show unusually large disagreements when they are obtained by the thermochemical approach based on the analysis of experimental data or by first-principles electronic structure calculations. Considering a typical example, the lattice stability of Mo, we present a solution to this long-standing problem. We carry out ab initio molecular dynamics simulations for the two phases at high temperature and show that the configurational energy difference approaches the value derived by means of the thermochemical approach. The main contribution to the effect comes from the modification of the canonical band structure due to anharmonic thermal motion at high temperature.

Place, publisher, year, edition, pages
2008. Vol. 77, no 22
Keyword [en]
total-energy calculations, centered-cubic iron, wave basis-set, ab-initio, earths core, phase, molecules, system
Identifiers
URN: urn:nbn:se:kth:diva-17661DOI: 10.1103/PhysRevB.77.220102ISI: 000257289300002Scopus ID: 2-s2.0-45349097988OAI: oai:DiVA.org:kth-17661DiVA: diva2:335706
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Belonoshko, Anatoly B.

Search in DiVA

By author/editor
Belonoshko, Anatoly B.
By organisation
Condensed Matter Theory
In the same journal
Physical Review B. Condensed Matter and Materials Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 40 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf