Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Interactions of hydroxyapatite surfaces: Conditioning films of human whole saliva
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface Chemistry.ORCID iD: 0000-0002-8935-8070
Show others and affiliations
2008 (English)In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 24, no 14, 7262-7268 p.Article in journal (Refereed) Published
Abstract [en]

Hydroxyapatite is a very interesting material given that it is the main component in tooth enamel and because of its uses in bone implant applications. Therefore, not only the characterization of its surface is of high relevance but also designing reliable methods to study the interfacial properties of films adsorbed onto it. In this paper we apply the colloidal probe atomic force microscopy method to investigate the surface properties of commercially available hydroxyapatite surfaces (both microscopic particles and macroscopic discs) in terms of interfacial and frictional forces. In this way, we find that hydroxyapatite surfaces at physiological relevant conditions are slightly negatively charged. The surfaces were then exposed to human whole saliva, and the surface properties were re-evaluated. A thick film was formed that was very resistant to mechanical stress. The frictional measurements demonstrated that the film was indeed highly lubricating, supporting the argument that this system may prove to be a relevant model for evaluating dental and implant systems.

Place, publisher, year, edition, pages
2008. Vol. 24, no 14, 7262-7268 p.
Identifiers
URN: urn:nbn:se:kth:diva-17675DOI: 10.1021/la800402sISI: 000257468300033Scopus ID: 2-s2.0-47949131739OAI: oai:DiVA.org:kth-17675DiVA: diva2:335720
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Rutland, Mark W.
By organisation
Surface Chemistry
In the same journal
Langmuir

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 40 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf