Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Eigenvalue estimates for magnetic Schrödinger operators in domains
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.). Princeton University, United States.
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.). Imperial College London, United Kingdom.
2008 (English)In: Proceedings of the American Mathematical Society, ISSN 0002-9939, E-ISSN 1088-6826, Vol. 136, no 12, 4245-4255 p.Article in journal (Refereed) Published
Abstract [en]

Inequalities are derived for sums and quotients of eigenvalues of magnetic Schrodinger operators with non-negative electric potentials in domains. The bounds reflect the correct order of growth in the semi-classical limit.

Place, publisher, year, edition, pages
2008. Vol. 136, no 12, 4245-4255 p.
Keyword [en]
eigenvalue bounds, semi-classical estimates, Laplace operator, magnetic, Schrodinger operator, 1st 2 eigenvalues, positive potentials, dirichlet laplacian, trace, identities, bounds, ratio
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-17773DOI: 10.1090/S0002-9939-08-09523-3ISI: 000258659500018Scopus ID: 2-s2.0-77950621483OAI: oai:DiVA.org:kth-17773DiVA: diva2:335818
Note

QC 20100525

Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Frank, Rupert L.Laptev, Ari
By organisation
Mathematics (Dept.)
In the same journal
Proceedings of the American Mathematical Society
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 38 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf