Change search
ReferencesLink to record
Permanent link

Direct link
Metal release rate from AISI 316L stainless steel and pure Fe, Cr and Ni into a synthetic biological medium: a comparison
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Corrosion Science.ORCID iD: 0000-0002-2123-2201
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Corrosion Science.ORCID iD: 0000-0003-2206-0082
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Corrosion Science.ORCID iD: 0000-0002-9453-1333
2008 (English)In: Journal of Environmental Monitoring, ISSN 1464-0325, E-ISSN 1464-0333, Vol. 10, no 9, 1092-1098 p.Article in journal (Refereed) Published
Abstract [en]

Metal release rates from stainless steel grade 316L were investigated in artificial lysosomal fluid (ALF), simulating a human inflammatory cell response. The main focus was placed on release rates of main alloying elements using graphite furnace atomic absorption spectroscopy, and changes in surface oxide composition by means of X-ray photoelectron spectroscopy. To emphasise that alloys and pure metals possess totally different intrinsic properties, comparative studies were performed on the pure alloying constituents: iron, nickel and chromium. Significant differences in release rates were observed due to the presence of a passive surface film on stainless steel. Iron and nickel were released at rates more than 300 times lower from the 316L alloy compared with the pure metals whereas the release rate of chromium was similar. Iron was preferentially released compared with nickel and chromium. Immersion in ALF resulted in the gradual enrichment of chromium in the surface film, a small increase of nickel, and the reduction of oxidized iron with decreasing release rates of alloy constituents as a result. As expected, released metals from stainless steel grade 316L were neither in proportion to the bulk alloy composition nor to the surface film composition.

Place, publisher, year, edition, pages
2008. Vol. 10, no 9, 1092-1098 p.
Keyword [en]
National Category
Chemical Sciences
URN: urn:nbn:se:kth:diva-17781DOI: 10.1039/b805075aISI: 000258737700011ScopusID: 2-s2.0-50849097045OAI: diva2:335826
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2010-08-10Bibliographically approved
In thesis
1. Bioaccessibility of Stainless Steels: Importance of Bulk and Surface Features
Open this publication in new window or tab >>Bioaccessibility of Stainless Steels: Importance of Bulk and Surface Features
2008 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

With increasing environmental awareness, the desire to protect human beings and the environment from adverse effects induced by dispersed metals has become an issue of great concern and interest. New policies, such as REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) within the European Community, have been implemented to reduce hazards posed by the use of chemicals on producers and downstream users. The generation of exposure assessment data and relevant test procedures able to simulate realistic scenarios are essential in such legislative actions.

This doctoral study was initiated to fill knowledge gaps related to the metal release process of stainless steels. A wide range of stainless steel grades, fourteen in total, were investigated. They cover a very broad range of applications, and the focus in the thesis was to simulate a few selected exposure scenarios: precipitation, the human body and food intake. Comparisons were made between metal release from stainless steel alloys and the pure metals that constitute each stainless steel in order to explore the differences between alloys and pure metals, and to provide quantitative data on metal release rates of different alloy constituents. Because of similar surface properties between stainless steel and pure chromium, this metal exhibits similar release rates, whereas iron and nickel exhibit significantly lower release rates as alloy components than as pure metals. Detailed studies were also performed to elucidate possible relations between metal release and steel surface properties. Key parameters turned out to be chromium enrichment of the self-passivating surface film, surface roughness, the electrochemically active surface area and the microstructure of the steel substrate. The degree of metal release increased with decreasing chromium content in the surface oxide, increasing surface roughness, and increasing presence of inhomogeneities in the bulk matrix.

More detailed studies were initiated to possibly correlate the nucleation of metastable pits and the extent of metal release. Evidence was given that metastable pits exist even when the stainless steel is passive, and may cause extremely short-lived bursts of released metal before the surface film repassivates again.

Place, publisher, year, edition, pages
Stockholm: KTH, 2008. 73 p.
Trita-CHE-Report, ISSN 1654-1081 ; 2008:39
Stainless steel, iron, chromium, nickel, corrosion, metal release, artificial rain, synthetic body fluids, acetic acid, surface oxide, surface finish
National Category
Physical Chemistry
urn:nbn:se:kth:diva-4773 (URN)978-91-7178-977-8 (ISBN)
Public defence
2008-06-03, F3, KTH, Lindstedtsvägen 26, Stockholm, 10:00
QC 20100810Available from: 2008-05-27 Created: 2008-05-27 Last updated: 2010-08-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Herting, GunillaOdnevall Wallinder, IngerLeygraf, Christofer
By organisation
Corrosion Science
In the same journal
Journal of Environmental Monitoring
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 100 hits
ReferencesLink to record
Permanent link

Direct link