Change search
ReferencesLink to record
Permanent link

Direct link
A two-time-scale dynamic-model approach for magnetic and kinetic profile control in advanced tokamak scenarios on JET
Show others and affiliations
2008 (English)In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 48, no 10Article in journal (Refereed) Published
Abstract [en]

Real-time simultaneous control of several radially distributed magnetic and kinetic plasma parameters is being investigated on JET, in view of developing integrated control of advanced tokamak scenarios. This paper describes the new model-based profile controller which has been implemented during the 2006-2007 experimental campaigns. The controller aims to use the combination of heating and current drive (H&CD) systems-and optionally the poloidal field (PF) system-in an optimal way to regulate the evolution of plasma parameter profiles such as the safety factor, q(x), and gyro-normalized temperature gradient,. rho*(Te)(x). In the first part of the paper, a technique for the experimental identification of a minimal dynamic plasma model is described, taking into account the physical structure and couplings of the transport equations, but making no quantitative assumptions on the transport coefficients or on their dependences. To cope with the high dimensionality of the state space and the large ratio between the time scales involved, the model identification procedure and the controller design both make use of the theory of singularly perturbed systems by means of a two-time-scale approximation. The second part of the paper provides the theoretical basis for the controller design. The profile controller is articulated around two composite feedback loops operating on the magnetic and kinetic time scales, respectively, and supplemented by a feedforward compensation of density variations. For any chosen set of target profiles, the closest self-consistent state achievable with the available actuators is uniquely defined. It is reached, with no steady state offset, through a near-optimal

Place, publisher, year, edition, pages
2008. Vol. 48, no 10
URN: urn:nbn:se:kth:diva-17933DOI: 10.1088/0029-5515/48/10/106001ISI: 000260566300006ScopusID: 2-s2.0-58149307437OAI: diva2:335978
QC 20100525Available from: 2010-08-05 Created: 2010-08-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Brzozowski, Jerzy H.
By organisation
Fusion Plasma Physics
In the same journal
Nuclear Fusion

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 21 hits
ReferencesLink to record
Permanent link

Direct link