Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
First-principles calculations of the electronic structure and pressure-induced magnetic transition in siderite FeCO3
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
2008 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 78, no 15Article in journal (Refereed) Published
Abstract [en]

Rhombohedral siderite FeCO3 has been studied by using density-functional theory with the generalized gradient approximation (GGA). In order to take into account the strong on-site Coulomb interaction U present in FeCO3, we also performed the GGA+U calculations. We observe a pressure-induced magnetic transition (high spin -> low spin) at pressures of 15 and 28 GPa, which are underestimated with respect to the experiment, for the GGA and GGA+U calculations, respectively. This phase transition was with a volume collapse of 10% around, also accompanied by increases in bulk modulus, Young's modulus and sound velocity. The electronic density of states and charge-density calculations revealed that the magnetic transition was due to the pressure-induced Fe 3d electron delocalization.

Place, publisher, year, edition, pages
2008. Vol. 78, no 15
Keyword [en]
x-ray-emission, augmented-wave method, low-spin transition, earths, lower mantle, metal oxides, spectroscopy, iron, phase, feo, approximation
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-17937DOI: 10.1103/PhysRevB.78.155119ISI: 000260574400058Scopus ID: 2-s2.0-55349116704OAI: oai:DiVA.org:kth-17937DiVA: diva2:335982
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2017-12-12Bibliographically approved
In thesis
1. Theoretical Investigations of Compressed Materials
Open this publication in new window or tab >>Theoretical Investigations of Compressed Materials
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The use of high pressure as a tool to design new materials as well as to investigatematerials properties has become increasingly important during last one decade. The maingoal of the present thesis is to enhance the significance of the high pressure method as aquantitative tool in solid state investigations. Virtually all of the properties of solids aredirectly determined by their electronic structure. Similarly, the changes in the propertiesof solids under pressure are determined by the changes in the electronic structure underpressure. We have attempted to provide a comprehensive description of the resulting theoryin a electronic structure and the properties of condensed matter.

The theoretical basis for these investigations is the density functional theory, in combinationwith ab initio method. The study of pressure induced phase transitions for thecompounds of CaF2, Cr2GeC, Ti3SiC2, as well as V at 0 K are presented. The latticeparameters, the phase transition pressures, the equation of states, the electronic structureshave been calculated and shown a good agreement with experimental results.

A lattices dynamic study of the body center cubic (bcc) Fe under high pressure andhigh temperature is presented. The bcc iron could dynamical stabilize in the Earth innercore conditions. The unusual phase transition of bcc V under high pressure is investigatedand it is shown that the driving mechanism is electron-phonon interaction.

Finally, a method based on the LDA+U approach has been applied to study spin statetransition in FeCO3. Our results show that magnetic entropy play a significant role in spinstate transition.

Place, publisher, year, edition, pages
Stockholm: KTH, 2010. 34 p.
National Category
Engineering and Technology
Identifiers
urn:nbn:se:kth:diva-24641 (URN)9789174157352 (ISBN)
Public defence
2010-10-08, Sal D3, Lindstedtsvägen 5, KTH, Stockholm, 10:00
Opponent
Supervisors
Note
QC 20100920Available from: 2010-09-20 Created: 2010-09-20 Last updated: 2010-09-22Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Luo, WeiJohansson, BörjeAhuja, Rajeev
By organisation
Applied Material PhysicsMaterials Science and Engineering
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 47 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf