Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Lee-Yang Problems and the Geometry of Multivariate Polynomials
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).ORCID iD: 0000-0003-1055-1474
2008 (English)In: Letters in Mathematical Physics, ISSN 0377-9017, E-ISSN 1573-0530, Vol. 86, no 1, 53-61 p.Article in journal (Refereed) Published
Abstract [en]

We describe all linear operators on spaces of multivariate polynomials preserving the property of being non-vanishing in open circular domains. This completes the multivariate generalization of the classification program initiated by Polya-Schur for univariate real polynomials and provides a natural framework for dealing in a uniform way with Lee-Yang type problems in statistical mechanics, combinatorics, and geometric function theory.

Place, publisher, year, edition, pages
2008. Vol. 86, no 1, 53-61 p.
Keyword [en]
phase transitions, Lee-Yang theory, linear operators, stable, polynomials, graph polynomials, apolarity, ferromagnets, systems, theorem
Identifiers
URN: urn:nbn:se:kth:diva-17982DOI: 10.1007/s11005-008-0271-6ISI: 000260960000003Scopus ID: 2-s2.0-56549097774OAI: oai:DiVA.org:kth-17982DiVA: diva2:336027
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Bränden, Petter

Search in DiVA

By author/editor
Bränden, Petter
By organisation
Mathematics (Div.)
In the same journal
Letters in Mathematical Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 38 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf