Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Triphenylamine Dye Model for the Study of Intramolecular Energy Transfer and Charge Transfer in Dye-Sensitized Solar Cells
Show others and affiliations
2008 (English)In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 18, no 21, 3461-3468 p.Article in journal (Refereed) Published
Abstract [en]

A novel dye (2TPA-R), containing two triphenylamine (TPA) units connected by a vinyl group and rhodanine-3-acetic acid as the electron acceptor, is designed and synthesized successfully to reveal the working principles of organic dye in dye-sensitized solar cells (DSSCs). 2TPA and TPA-R, which consist of two TPA units connected by vinyl and a TPA unit linked with rhodanine-3-acetic acid, respectively, are also synthesized as references to study the intramolecular energy transfer (EnT) and charge transfer (ICT) processes of 2TPA-R in CH2Cl2 solution and on a TiO2 surface. The results suggest that the intramolecular EnT and ICT processes show a positive effect on the performance of DSSCs. However, the flexible structure and less-adsorbed amount of dye on TiO2 may make it difficult to improve the efficiency of DSSCs. This study on intramolecular EnT and ICT processes acts as a guide for the design and synthesis of efficient organic dyes in the future.

Place, publisher, year, edition, pages
2008. Vol. 18, no 21, 3461-3468 p.
Identifiers
URN: urn:nbn:se:kth:diva-18004DOI: 10.1002/adfm.200800516ISI: 000261198200015Scopus ID: 2-s2.0-55849085009OAI: oai:DiVA.org:kth-18004DiVA: diva2:336049
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Sun, Licheng

Search in DiVA

By author/editor
Hagfeldt, AndersSun, Licheng
By organisation
Organic Chemistry
In the same journal
Advanced Functional Materials

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 41 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf