Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Triple fcc-bcc-liquid point on the Xe phase diagram determined by the N-phase method
KTH, School of Engineering Sciences (SCI), Theoretical Physics, Condensed Matter Theory.ORCID iD: 0000-0001-7531-3210
2008 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 78, no 17Article in journal (Refereed) Published
Abstract [en]

There is a discrepancy between the fcc-bcc phase boundaries in Xe determined by the two-phase and the lambda-integration methods. To resolve this issue, I performed large scale (4x10(6) atoms) molecular-dynamics simulations of fcc and bcc Xe phases embedded in liquid Xe. Such simulations, which I call N-phase method, allows for the hydrostatic freezing or melting and direct competition of the phases under consideration. As a result of these long (over several nanoseconds) simulations, I can place the triple fcc-bcc-liquid point on the melting curve of Xe between temperatures of 3470 and 4000 K. This suggests that certain effects are not taken into account in the previous work. Possible reasons are discussed.

Place, publisher, year, edition, pages
2008. Vol. 78, no 17
Keyword [en]
volume-temperature properties, molecular-dynamics, supercritical, fluids, simulation, aluminum, iron, mgo
Identifiers
URN: urn:nbn:se:kth:diva-18010DOI: 10.1103/PhysRevB.78.174109ISI: 000261214500028Scopus ID: 2-s2.0-57349145284OAI: oai:DiVA.org:kth-18010DiVA: diva2:336055
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Belonoshko, Anatoly B.

Search in DiVA

By author/editor
Belonoshko, Anatoly B.
By organisation
Condensed Matter Theory
In the same journal
Physical Review B. Condensed Matter and Materials Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 48 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf